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Abstract— We propose a new aerial tool operation system
consisting of multiple quadrotors connected to a tool by
spherical joints to perform tool operation tasks. We model the
system and show that the attitude dynamics of each quadrotor
is decoupled from the tool dynamics, so that we can consider
the quadrotors as thrusters and control the tool by adjusting
the orientation and magnitude of these thrusters. We also show
that the 6-DOF tool dynamics could be under-actuated or fully-
actuated, depending on the number of quadrotors attached to
the tool and the geometric configuration of their attachments.
We then design control laws for the tool-tip position/orientation
tracking of the (under-actuated) tool system with two quadro-
tors and the (fully-actuated) tool system with three quadrotors.
We use Lyapunov approach to find the desired thrust command
for each quadrotor while also taking into account the spherical
joint limits in a form of constrained optimization. Simulation
and implementation results are performed to support the
theory.

I. INTRODUCTION
Recently, quadrotors have attracted tremendous attention

from research community and general public alike, due to
their agile performance and affordability. Many strong results
have been achieved for the motion control of the center
of mass position of the quadrotors, which is the backbone
of many powerful applications such as aerial photography,
remote movie shooting, landscape survey or surveillance. See
[1] for a recent development.

With the plethora of control results for the quadrotor
motion control, it can now be expected that the research
focus will be broadened to applications requiring interaction
of quadrotors with their surrounding environment, external
objects or even between quadrotors themselves. However,
there are relatively rare results for this purpose, e.g., hybrid
position/force control [2] and tool operation [3], [4], [5] using
a single quadrotor, cable-suspended payload transport [6],
[7], contact task using attached ducted-fan UAVs [8], [9],
and quadrotor-manipulator systems [10].

Among these, we believe the idea of achieving aerial tool
operation by using a tool rigidly-attached to a quadrotor
with the quadrotor acting as the direct actuator [3], [4],
[5] is promising, since with a simple un-actuated tool (e.g.,
screw-driver), the system would be more affordable and
also can accommodate higher interaction force (or payload)
with longer flight-time (as compared to, e.g., quadrotor-
manipulator systems with heavy multi-DOF arm). However,
we also found in [3], [4], [5] that possible tasks achievable by
using this simple rigid-tool attached to the quadrotor would
be limited, since the tool operation requires simultaneous
control of the 6-DOF quadrotor position and orientation,
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Fig. 1. Spherically-connected multiple-Quadrotor Tool (SmQT) system:
{O} := {No, Eo, Do} and {T} := {NT , ET , DT } are the fixed and
tool frames with Do-axis being the gravity direction.

yet, the quadrotor itself is under-actuated with only four
actuations. This issue of under-actuation, in fact, turns out
to be able to create unstable internal dynamics (with the
tool attached below the quadrotor) or even trigger finite-time
escape, thereby, limiting its practical applicability. Refer to
[3], [4] for more details.

To overcome this limitation of the single-quadrotor tool
operation system, in this paper, we propose a new aerial
tool operation system consisting of multiple quadrotors con-
nected to a tool by spherical joints. See Fig. 1. With the
attitude dynamics of each quadrotor decoupled from the
tool dynamics, we can then control the tool by adjusting
the attitude of the quadrotors and the magnitude of their
thrusts. In other words, we can utilize multiple quadrotors
as distributed rotating thrust generators for the tool. This
proposed aerial tool system is promising to overcome some
key problems of current aerial manipulation systems, that
are, 1) can extend limited interaction force (or payload), short
flight-time by utilizing multiple quadrotors and a simple un-
actuated tool; and 2) can resolve the under-actuation issue of
a single quadrotor system by selecting suitably the geometric
configuration of multiple distributed thrusters/quadrotors.

Another benefit of this proposed system, not yet clear at
first glance, is that the tool system is more robust under
side-way gust since the tool dynamics would not be dis-
turbed as the quadrotors tilt to counteract the wind gust.
For typical quadrotor-manipulator (QM) systems, however,
the disturbance on the quadrotor attitude will consequently
impact on the attitude of the manipulator and therefore the
performance of the QM system. How to improve robustness
of QM systems under wind gust is rather challenging since
1) for a simple QM system, e.g., system with 2-DOF arm, the
disturbance from quadrotor attitude may not be completely
compensated by the arm movement; 2) for a complex QM
system with a dexterous multi-DOF arm, the compensation
motion of the arm may in turn induce further disturbance
on the quadrotor platform. This, in fact, defines a clear ad-
vantage of this spherically-connected quadrotor tool system
against other rigidly-connected QM systems.

The main contribution of this paper is the dynamics
analysis and the basic pose tracking control design of
this Spherically-connected multiple-Quadrotor Tool (SmQT)
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system. More specifically, we first provide the dynamics
modeling of the total system and characterize the condition
for the 6-DOF tool to be fully-actuated while respecting
the motion limits of the spherical joints. This condition
in fact turns out to depend on the mechanical design of
the system (i.e., number of quadrotors attached to the tool,
geometric configuration of their attaching points and axes
of their spherical joints). We then consider Spherically-
connected 2-Quadrotor Tool (S2QT) system, which, although
under-actuated along one direction (i.e., only 5-DOF of
the 6-DOF tool is actuated), can still be made to track a
desired tool-tip position trajectory with certain orientation;
and also the Spherically-connected 3-Quadrotor Tool (S3QT)
system, which, under the aforementioned mechanical design
condition, becomes fully-actuated so that we can achieve
full 6-DOF dexterous motion. For all these applications,
we utilize Lyapunov approach to design the desired control
wrench of the tool, and allocate that computed wrench to
each quadrotor while respecting the spherical joint limits by
solving a certain constrained optimization, whose structure
turns out to be similar to the well-known problem of robot
grasping with friction-cone constraint [11].

Some results relevant to our system are as follows. In
[12], the authors use multiple quadrotors fixed to an object
to extend payload limitation of the system, yet, the dynamics
of the payload is still under-actuated as the thrust directions
of the quadrotors are all aligned with each other. In [9],
the authors propose a system of multiple ducted-fan UAVs
rigidly-connected with each others to achieve full-actuation.
The system of [9] yet is different from ours with their
results not applicable to ours. In [6], [7], a cable-suspended
system using multiple UAVs is considered, where the equi-
librium pose of the suspended payload can be achieved by
equilibrating the gravity wrench with the wrenches exerted
by the cables from multiple UAVs. In these works, they
assume that 1) the system is quasi-static, i.e., the inertial
forces associated with the motions of the payload and the
quadrotors are negligible, and 2) the cable attachment points,
therefore UAVs, can be controlled kinematically regardless
of the interaction between the payload and the UAVs. This
in fact is in a stark contrast to our result here, where the full
dynamics of the system including the dynamics interaction
between the quadrotors and the tool need to be explicitly
modeled and analyzed.

The rest of this paper is organized as follows. The dynamic
model of the system is derived in Sec. II. The relation
between full-actuation and mechanical design is analyzed
in Sec. III. Two control design examples, tool-tip posi-
tion/orientation tracking control of the S2QT system and
S3QT system, are presented in Sec. IV along with rele-
vant simulation and experimental results. Some concluding
remarks are given in Sec. V.

II. SYSTEM MODELING

A. System Description
Consider a system consisting of n(≥ 2) quadrotors con-

nected to a tool using spherical joints as shown in Fig 1.
These spherical joints have limited range of motion, which
can be represented as a reaching cone (pi, φi) with the
center-axis unit vector pi ∈ <3 and the range of angle motion
φi ∈ < (0 ≤ φ ≤ π/2) as shown in Fig 2. Then, we can
define the spherical joint limit constraints as:

pTi Γi ≥ |Γi|cosφi, i = 1, 2, ..., n (1)

Fig. 2. Joint limit of spherical joint: pi is the center-axis unit vector, φi
the allowable motion range, and Γi the quadrotor thrust in tool frame.

where Γi := λiR
T
0 Rie3 ∈ <3 is the quadrotor thrust in tool

frame, R0, Ri ∈ SO(3) are the attitudes of the tool and the
ith quadrotor with respect to the fixed frame, |λi| = |Γi| ∈ <
is the magnitude of the quadrotor thrust, and e3 = [0; 0; 1]
is the standard unit vector along the D−axis.

These constraints can be defined according to the me-
chanical limit of the spherical joints themselves or to avoid
collision between the quadrotors and the tool. Note also that
these constraints themselves require the body-frame thrusts
generated by the quadrotors to be positive (λi > 0).

In this work, we assume that each joint is attached at the
center-of-mass of each quadrotor, which can be satisfied with
the mechanical design shown in Sec IV-A. We then have
the following relation between the center-of-mass position
xi ∈ <3(i ≥ 1) of the ith quadrotor and the position x0 ∈ <3

of the tool in the fixed frame {O} as:

xi = x0 +R0ri (2)

where ri ∈ <3 is the attaching point of the ith quadrotor
represented in the tool frame {T}. See Fig. 1.

With (2) acting as constraints, the dynamics of each
quadrotor and the tool can be written as:

miẍi = −λiRie3 +mige3 +Ni

Jiω̇i = −S(ωi)Jiωi + τi

m0ẍ0 = −
n∑

i=1

Ni +m0ge3 + fe

J0ω̇0 = −S(ω0)J0ω0 −
n∑

i=1

S(ri)R
T
0 Ni + τe

(3)

where mi, Ji and m0, J0 are the mass and inertia of the ith
quadrotor and the tool respectively, ωi, ωo ∈ so(3) are their
angular velocities, Ni ∈ <3 is the constraint force between
the ith quadrotor and the tool, S(ω) is a skew-symmetric
matrix such that S(ω)ν = ω×ν, ∀ω, ν ∈ <3, and fe, τe ∈ <3

are the external force and torque acting at the center-of-mass
of the tool represented in the fixed frame {O} and the tool
frame {T}, respectively.

B. Reduced Dynamics

By eliminating the constraint forces Ni in (3), we can
reduce the dynamics (3) into the 6-DOF dynamics of the
tool and the 3-DOF attitude dynamics of each quadrotor as
follows. First, the 6-DOF tool dynamics is given by:

Mξ̇ + C +G = U + Fe (4)
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where ξ = [ẋ0;ω0] ∈ <6 is the 6-DOF translation/angular
tool velocity,

M :=

[ ∑n
i=0miI −

∑n
i=1miR0S(ri)∑n

i=1miS(ri)R
T
0 J0 −

∑n
i=1miS

2(ri)

]
C :=

[
−
∑n

i=1miR0S(ω0)S(ri)ω0

−
∑n

i=1miS(ri)S(ω0)S(ri)ω0 + S(ω0)J0ω0

]
G :=

[
−
∑n

i=0mige3

−
∑n

i=1migS(ri)R
T
0 e3

]
, Fe :=

[
fe
τe

]
are the lumped inertia matrix, the Coriolis, the gravity and
the external forcing terms of the tool dynamics, respectively,
U := R̄BΓ ∈ <6 is the control action of the tool with
R̄ := −diag[R0, I] ∈ <6×6,

B(r) :=

[
I I ... I

S(r1) S(r2) ... S(rn)

]

Γ :=


Γ1

Γ2
...

Γn

 =


λ1R

T
0 R1e3

λ2R
T
0 R2e3
...

λnR
T
0 Rne3


with r = (r1, r2, ..., rn) and I ∈ <3×3 being identity matrix.
On the other hand, the attitude dynamics of each quadrotor
is given by:

Jiω̇i = −S(ωi)Jiωi + τi (5)

We can then see that the quadrotor attitude dynamics (5)
is decoupled from the tool dynamics (4). Here, since the
attitude dynamics of the quadrotors is typically faster than the
tool dynamics, we can use the thrusts Γi = λiR

T
0 Rie3 ∈ <3

as the control input for the 6-DOF tool dynamics (4), that
is, use the n-quadrotors as rotating thrust actuators for the
6-DOF tool dynamics (4).

We can also see that the structure of B(r) ∈ <6×3n in
(4) dictates whether we can generate an arbitrary control
action U ∈ <6 by using the thrust inputs Γi of the n-
quadrotors. This structure of B(r) depends on the the number
of quadrotors and their attaching points ri (see Fig. 1). In
the next Sec. III, we show how the geometric design and the
attachment of the spherical joints affect the control actuation
for the 6-DOF aerial tool system.

III. CONTROL ALLOCATION UNDER SPHERICAL
JOINT CONSTRAINTS

As mentioned above, we want to utilize the thrust of each
quadrotor (i.e., Γi = λiR

T
o Rie3) to generate the desired

control action U ∈ <6 for the tool dynamics while respecting
the spherical joint limit constraints (1). This problem can
be formulated as the following constrained optimization
problem:

min
Γ1,Γ2,...,Γn∈<3

1

2
ΓT Γ (6)

subject to

BΓ = R̄−1U =:

[
Fd

Md

]
pTi Γi ≥ |Γi| cosφi, i = 1, 2, ..., n

(7)

where the first condition of (7) is to generate the desired
control action [Fd;Md] ∈ <6 and the second condition is
the spherical joint constraints. This constrained optimiza-
tion is convex, and also similar to the well-known robot

grasping problem under friction-cone constraint, with many
algorithms available to solve it in real-time (e.g., [11]).

Now, let us examine the first condition of (7). There,
since [Fd;Md] := R̄−1U ∈ <6 can be thought of as
a given arbitrary control command, the existence of its
solution depends on the rank of the matrix B ∈ <6×3n.
However, as can be seen from (4), B(r) is a function of
only mechanical design parameters ri (i.e., the attaching
point of each quadrotor). In other words, this ri affects the
structure of B, which in turn decides the existence of solution
for (7). This suggests us to choose these mechanical design
parameter ri s.t.,

rank(B) = 6 (8)

If this condition is satisfied, we say the 6-DOF tool dynamics
(4) is fully-actuated, otherwise under-actuated. The next
Prop. 1 shows that the number of quadrotors connected to
the tool (i.e., n) and their attaching points (i.e., ri ∈ <3)
dictate the full-actuation condition (8) of the 6-DOF tool
dynamics.

Proposition 1: Consider the system consisting of n
quadrotors connected to a tool by spherical joints with the
dynamics (3). Then the 6-DOF tool dynamics (4) is fully-
actuated in the sense of (8) if and only if there are at least
three quadrotors, whose attaching points ri to the tool are
not collinear with each other (i.e., (r2−r1)×(r3−r1) 6= 0).
Otherwise, the 6-DOF tool dynamics (4) is under-actuated.

Proof: First, we consider the case where there are three
quadrotors attached to the tool, whose attaching points to
the tool (i.e., ri) are not collinear as stated above. Then, the
control generated by these quadrotors is given by

BΓ =

[
I I I

S(r1) S(r2) S(r3)

]
︸ ︷︷ ︸

:=B

λ1R
T
0 R1e3

λ2R
T
0 R2e3

λ3R
T
0 R3e3


︸ ︷︷ ︸

:=Γ

where we can decompose B s.t.,

B =

[
I 0

S(r1) I

]
︸ ︷︷ ︸

:=L

[
I 0 0
0 S(r2 − r1) S(r3 − r1)

]
︸ ︷︷ ︸

:=Σ

[
I I I
0 I 0
0 0 I

]
︸ ︷︷ ︸

:=H

We can then see that rank(B) = rank(Σ) since L and
H are full-rank. Thus, if (r2 − r1) × (r3 − r1) 6= 0, we
have rank(Σ) = 6 = rank(B). Consider also the case that
there are only two quadrotors or more than three quadrotors,
yet, their attaching points are all collinear. We then have
rank(B) = rank(Σ) = 5, i.e., the tool dynamics is under-
actuated. This completes the proof.

Now, suppose that we have three quadrotors attached to the
tool satisfying Prop. 1 as shown in Fig 1. This then ensures
that there exists a solution Γi ∈ <3 to produce the desired
tool control input U ∈ <6. What is unclear though is whether
this thrust input vector Γi will also respect the motion limit
of the spherical joints, i.e., the second condition of (7). This
problem is indeed similar to the robot grasping with friction
contacts [13], in the sense that we want our tool in the force-
closure with the thrust forces Γi lying inside the spherical
joint limit cone (pi, φi). The following Prop. 2, which is
from [13], is due to this similarity between our tool system
under spherical joint limit constraints and the grasping under
friction-cone constraints.

Proposition 2: For the system of three quadrotors satis-
fying Prop. 1, we can generate any desired control U ∈ <6
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in (4) using the thrust inputs Γi ∈ <3 while respecting the
spherical joint limits (1), if and only if the tool is in force-
closure with the contact forces Γi lying inside the spherical
joint limit cone (1).

The Prop. 1 and Prop. 2 can provide a suggestion on how
to choose the mechanical design parameters ri and pi to
better generation of control actuation. Even if one of these
Prop. 1 or Prop. 2 is not granted, we may still produce some
motions, which will be limited, yet, may be still useful.
One of the key challenges in the presence of this under-
actuation problem is that there may be no solution for the
optimization problem (6)-(7). For example, for S2QT system,
as shown in Sec. IV-A, the tool is under-actuated, yet, still
exhibit useful motions. For this, we also provide a closed-
form solution of the optimization problem (6)-(7), which, of
course, can accommodate only some limited possible control
actions [Fd;Md]. In contrast, for the case of S3QT system,
all conditions of Prop. 1 and Prop. 2 are satisfied (with
enough thrust magnitudes), for which we can utilize the
rich literature of optimization to generate any 6-DOF tool
behavior as illustrated in the control design example in Sec.
IV-B.

IV. TOOL OPERATION CONTROL DESIGN
EXAMPLES

In this section, we address the control problems of tool-
tip pose tracking of the under-actuated S2QT system and the
fully-actuated S3QT system.

A. Under-actuated S2QT System

As mentioned in Sec. III, the 6-DOF tool with two
quadrotors connected via spherical joints is under-actuated.
However, as shown below, we can still utilize this S2QT sys-
tem to generate some limited, yet, useful behaviors, that is,
controlling the tool-tip Cartesian position while maintaining
a certain desired orientation. For this purpose, we utilize two
identical quadrotors, which are symmetrically attached to the
tool as shown in Fig. 3 with the following mechanical design
parameters:

r1 = −r2 = −r̄e1, p1 = p2 = e3 (9)

where r̄ > 0 is the distance from the quadrotor to the tool’s
center-of-mass and e1 = [1; 0; 0] ∈ <3 is the unit vector
along the N -axis.

Here, for simplicity of control derivation/analysis, we also
assume that the tool-tip position y ∈ <3 is located on the line
connecting the center-of-mass positions of the two quadro-
tors, with its position specified by d = d̄e1 ∈ <3 in the tool-
frame {T} with the distance d̄ ≥ 0 from xo - see Fig. 3. We
also assume that the interaction between the tool-tip and the
external environment is a point contact with the interaction
torque at the tool-tip being negligible, i.e., τye ≈ 0, and the
measurement of the contact force fye available. Even though
these assumptions are not precisely in accordance with the
real tool system of Fig. 3 (e.g., offset between the line and the
tool-tip y along the body-fixed D-direction; non-negligible
interaction torque at the tool-tip due to deformation), we
also found that the tool system, under the control derived
with these assumptions, was functioning adequately in real
implementation as shown below. Control derivation/analysis
with these assumptions completely removed, i.e., control
design with parameter uncertainty and imperfect external
force measurement/estimation, turns out to be rather involved

Fig. 3. Protype of S2QT system with two identical symmetrically-attached
quadrotors: r1 = −r2 = −r̄e1 and p1 = p2 = e3.

due to the presence of under-actuation and will be reported
in a future publication.

Our objective is then to control the tool-tip position y
to track a desired trajectory yd ∈ <3 and the orientation
of the tool, represented by R0e1 ∈ S2, to converge to a
desired orientation γd ∈ S2. We use the reduced-attitude
vectors (i.e., R0e1, γd ∈ S2) here instead of rotation matrices
(e.g., R0, Rd ∈ SO(3)), since the rotation about the pointing
direction (i.e., R0e1, γd) is not intended. Note also that,
similar to the single quadrotor tool operation [4], we need
to simultaneously control the translation (i.e., x0) and the
rotation (i.e., R0) of the tool. For the case of quadrotor-tool
system [4], its under-actuation can induce unstable internal
dynamics and even finite-time escape. In contrast to that, for
our tool system with two quadrotors, due to the presence of
more actuations and the gravity, we do not encounter with a
similar issue of internal dynamics instability problem despite
of its under-actuation.

To design the control, we first write down the kinematic
relation between the tool-tip position y and the tool center-
of-mass x0 in the fixed frame {O}

y = x0 +R0d

ẏ = ẋ0 +R0S(ω0)d
(10)

where we can consider ẋ0 and ω0 as the control inputs. Let
us define the desired value of ẋ0 to be ẋd s.t.,

ẋd := −ky(y − yd) + ẏd (11)

In general, ėx := ẋ0 − ẋd 6= 0. With this, we can rewrite
(10) s.t.,

ėy + kyey = ėx +R0S(ω0)d (12)

where ey = y − yd. We can then see that, if we can
achieve ėx → 0 and R0S(ω0)d → 0, we will have ey → 0
exponentially. Also, if ω0(t) → 0, we can further conclude
that eR := R0e1−γd → 0 asymptotically. These are the key
ideas of the following Th. 1.

Theorem 1: Consider the S2QT system (4) as stated
above. Then, (ey, ėx) → 0 exponentially and (ω0, eR) → 0
asymptotically, if the following condition is satisfied:[

I I
S(r1) S(r2)

] [
Γ1

Γ2

]
=

[
Fd

Md

]
(13)

with

Fd := RT
0 ey −

2∑
i=0

miR
T
0 ẍ

d +

2∑
i=0

migR
T
0 e3 + kxR

T
0 ėx +RT

0 f
y
e

Md := −S(d)RT
0 ey + kω

[
0
ω0y

ω0z

]
− kRS(e1)RT

0 γd + S(d)RT
0 f

y
e

where ω0y, ω0z are the second and third components of ω0 ∈
<3, respectively, e1 = [1, 0, 0]T ∈ <3 and γd ∈ S2 is the
desired orientation.
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Proof: Let us define the Lyapunov function:

V1 =
1

2
eTy ey +

1

2

2∑
i=1

miė
T
x ėx

+
1

2
ωT

0 (J0 −
2∑

i=1

miS
2(ri))ω0 + kR(1− γTd R0e1)

where J0 −
∑2

i=1miS
2(ri) is positive definite since

−S2(r1) = −S2(r2) = r̄

[
0 0 0
0 1 0
0 0 1

]
and γTd R0e1 ≤ 1.

Taking the derivative of V along (4), we then have:

V̇1 =eTy (−kyey + ėx +R0S(ω0)d)− kRγTd RS(ω0)e1

+ ėTx (

2∑
i=0

mige3 + fye −
2∑

i=1

λiRie3 −
2∑

i=0

miẍ
d)

+ ωT
0 (−

2∑
i=1

λiS(ri)R
T
0 Rie3 + S(d)RT

0 f
y
e )

Further, if we insert the condition (13) into the above relation,
we have:

V̇1 = −kyeTy ey − kxėTx ėx − kω[ω2
0y + ω2

0z] ≤ 0

This implies (ey, ėx)→ 0 exponentially and ω0 are bounded.
Similar to [14], we can establish (ω0, eR) → 0 asymptoti-
cally. This completes the proof.

Now, given the target control action R̄−1U := [Fd;Md]
as computed in Th. 1, the next task is to allocate this U into
each quadrotor thrust control Γi = λiR

T
0 Rie3 ∈ <3 while

respecting the spherical joint constraints (1), that is, solving
the constrained optimization problem (6)-(7). Of course, due
to the under-actuation of this two-quadrotor tool system,
not all the 6-DOF motion is attainable. In fact, due to the
under-actuation, this S2QT system can only control 5-DOF
motion, with the 1-DOF rotation along the body-fixed N -
direction not directly controllable. If we do not consider this
kind of limitation, the constrained optimization (6)-(7) can
suffer from the non-existence of solutions. To avoid this,
we intentionally set the first row of Md in Th. 1 to be
zero, i.e., eT1 Md = 0, with d = d̄e1, eT1 S(e1)RT

0 γd =
0, eT1 S(d)RT

0 f
y
e = 0 and eT1 S(d)RT

0 ey = 0. Note that, with
the desired pointing direction (i.e., γd ∈ S2), the information
of rotation about this pointing direction is reduced. It is also
worthwhile to mention that this un-actuated rotation about
the N -direction in tool frame (i.e., R0e1) is still stabilized
due to gravity, similar to the case of stable pendulum [14].

Now, for given Fd,Md, we can also explicitly solve the
second and third components of Γ1,Γ2 from (13) s.t.,Γ1y

Γ1z

Γ2y

Γ2z

 =
1

2

Fdy −Mdz/r̄
Fdz +Mdy/r̄
Fdy +Mdz/r̄
Fdz −Mdy/r̄


where Γi =: [Γix; Γiy; Γiz] ∈ <3 and Fd =:
[Fdx;Fdy;Fdz] ∈ <3. This means that for given Fd,Md,
there exists unique solution for Γ1y,Γ1z,Γ2y,Γ2z , which can
be explained as following. Given the force along the E-axis
Fdy and the torque about the D-axis Mdz , we need a pair of

Fig. 4. Geometry of the simplified optimization problem (14)-(15).

forces along the E-axis Γ1y,Γ2y to balance them. Similarly,
given Fdz,Mdy , we need a pair of forces along the D-axis
Γ1z,Γ2z .

Then, with Γ1y,Γ1z,Γ2y,Γ2z as determined above, we can
further simplify the optimization problem (6)-(7) s.t.,

min
Γ1x,Γ2x∈<

1

2
(Γ2

1x + Γ2
2x) (14)

subject to

Γ1x + Γ2x = Fdx

Γ2
ix ≤

1− cos2 φi
cos2 φi

Γ2
iz − Γ2

iy︸ ︷︷ ︸
=:c2i

, i = 1, 2 (15)

with c1, c2 are assumed to be positive real numbers here.
Geometric structure of this optimization problem (14)-(15)

is shown in Fig. 4, from which we can then see that, if
|Fdx| ≤ c1 + c2, the solution has the following closed-form
expression:

Γ1x =
1

2
Fdx + ζ, Γ2x =

1

2
Fdx − ζ

where

ζ :=

0 if 1
2
|Fdx| ≤ min(c1, c2)

1
2
Fdx − c2 if 1

2
|Fdx| > min(c1, c2), c1 ≥ c2

− 1
2
Fdx + c1 if 1

2
|Fdx| > min(c1, c2), c1 < c2

(16)

Of course, there may be a certain behavior which may
be too aggressive to be realized by the two quadrotors with
limited spherical joint motions. More precisely, from Fig.
4, we can conclude that, if one of the following conditions
is granted, no solution exists for Γ1,Γ2, that produces the
desired control action while respecting the spherical joint
constraints:

|Fdx| > c1 + c2,
1− cos2 φi

cos2 φi
Γ2
iz − Γ2

iy < 0, i = 1, 2

This means that, with the under-actuated S2QT system, we
can generate only some limited desired tool control Fd,Md.
For controlling more complex motion, we need to have a
fully-actuated 6-DOF tool system satisfying both Prop. 1 and
2, for instance, the S3QT system presented in Sec. IV-B.

Remark 1: The obtained thrust inputs, Γ1,Γ2 via the
constrained optimization (6)-(7), should then be produced
by each quadrotor via their individual control inputs (λi, ωi)
or (λi, τi). Here, the magnitude of Γi can be directly attained
by λi, yet, the direction of Γi should be achieved by aligning
its orientation Ri through ωi or τi. There are many available
control techniques for this. For the implementation below,
we adopt the backstepping control of [15].

To validate the theory, we here perform preliminary ex-
periments for this S2QT system. The quadrotors used are
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Fig. 5. S2QT system: tool-tip tracking a vertical rectangular-like shape
while maintaining a certain attitude (e.g., pitch and yaw all zero).

Fig. 6. Impedance control of S2QT system with external forces along
N /D/E−directions.

AscTec Hummingbirds, where the weight is about 0.6 kg,
the recommended payload is 0.2 kg and the maximum thrust
is 20 N. The mechanical design of the system is shown in
Fig. 3, where the spherical joints are at the quadrotor center-
of-masses to satisfy the assumption in Sec. II. The spherical
joints used here has the range of angle motion φi = 32◦.
The weight of the tool and joints are 0.34 kg. With this
system in Fig. 3, we could obtain the maximum horizontal
force of approximately 14 N while maintaining hovering,
which is fairly high as compared to other aerial manipulation
systems (e.g., 6 N contact force of [8]). In these preliminary
experiments, we use VICON motion capture system to
measure the attitudes of the tool and the quadrotors, and
the translation of the tool. How to obtain these quantities
without motion capture system, e.g., using IMU and optical
flow [16], is a topic of future development.

The scenario for experiment aims at showing that the
attitude of the tool can be maintain while tracking desired
motion of the tool-tip. As stated in Sec. IV-A, although, for
the prototype of Fig. 3, the tool-tip is not on the line con-
necting the two center-of-masses of quadrotors, the system

performs adequately as can be seen below. The scenario and
tracking errors for this S2QT system are presented in Fig.
5. We can see that, without the presence of external force,
the tool-tip tracks the desired trajectory fairly well, with the
error less than 5 cm while maintaining the desired attitude.
During the flight, we observed that the tool maintains the
desired pose due to the gravity stabilization [14]. In case the
tool-tip is on the line connecting two center-of-masses of the
quadrotors, the system can stably resist external forces acting
on the tool (τye ≈ 0), as shown in Fig 6. Experiment videos
with different scenarios can be found at the following URL:
http://inrol.snu.ac.kr/iros2015.

B. Fully-actuated S3QT System

Here, we consider the problem of the tool-tip posi-
tion/orientation control of the fully-actuated 6-DOF tool sys-
tem with three quadrotors. Let us define the desired tool-tip
pose as (yd, Rd) ∈ SE(3) represented in the inertial frame
{O}. Note that, Rd ∈ SO(3) here can be chosen arbitrary
in contrast to the case of two quadrotors of Sec. IV-A, for
which we restrict ourselves to a desired pointing direction
γd ∈ S2 with the rotation around γd being neglected.

Our control objective is (y,R0)→ (yd, Rd). As stated in
Sec. III, for the three quadrotors, as long as each quadrotor
can produce enough thrust, we can always find the desired
thrust input Γi for each quadrotor, that can generate the
desired wrench for the tool [Fd;Md] while also respecting
the spherical joint limits, as the system can always satisfy
Prop. 1 and Prop. 2 in this case.

Similar to Sec. IV-A, we start with the kinematic relation:

ẏ = ẋ0 +R0S(ω0)d (17)

with d = [d1; d2; d3] ∈ <3 is the tool-tip position expressed
in the tool-frame {T}. Here, differently from the case of two-
quadrotor tool system in Sec. IV-A, we assume an arbitrary
vector d ∈ <3 for the tool-tip position, since, in this case,
with the full-actuation with three quadrotors, such a general
d does not make the control derivation/analysis any more
complicated in comparation to the case of d = d̄e1 in Sec.
IV-A. Then, similar to the procedure of Sec. IV-A, using
ẋ0, ω0 as the control input, we can again enforce (y,R0)→
(yd, Rd) as summarized in the following Th. 2.

Theorem 2: Consider the S3QT system (4) as stated
above. Then, we have (y,R0) → (yd, Rd) asymptotically,
if the following conditions are satisfied:[

I I I
S(r1) S(r2) S(r3)

] [Γ1

Γ2

Γ3

]
=

[
Fd

Md

]
(18)

where

Fd := RT
0 ey −

3∑
i=0

miR
T
0 ẍ

d +

3∑
i=0

migR
T
0 e3 + kxR

T
0 ėx

+

3∑
i=1

miS(ω0)S(ri)ω0 +RT
0 fe

Md := −S(d)RT
0 ey + kωω0 + kR[RT

0 Rd −RT
dR0]∨

+

3∑
i=1

migS(ri)R
T
0 e3 + τe

and [?]∨ is denoted [?]∨ : so(3)→ <3.
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Proof: Let us define the Lyapunov function:

V2 =
1

2
eTy ey +

1

2

[
ėTx ωT

0

]
M
[
ėx
ω0

]
+ kR(3− trace(RT

0 Rd))

We then have:

V̇2 = −kyeTy ey + ωT
0 τe + ėTx (ey −

3∑
i=0

miẍ
d + fe)

+ ωT
0 [−

3∑
i=1

λiS(ri)R
T
0 Rie3 + S(d)RT

0 ey +

3∑
i=1

migS(ri)R
T
0 e3]

+ ėTx [

3∑
i=0

mige3 +

3∑
i=1

miR0S(ω0)S(ri)ω0 −
3∑

i=1

λiRie3]

+ kRω
T
0 [R

T
0 Rd −RT

dR0]
∨

Using condition (18), we further have

V̇2 = −kyeTy ey − kxėTx ėx − kωωT
0 ω0 ≤ 0

and V̇2 = 0 when (ey, ėx, ω0) = 0. Then, similar to
Sec. IV-A, we can show that (ey, ėx) → 0 exponentially.
Also, using the result of [17], we have (ω0, R0) → (0, Rd)
asymptotically. This completes the proof.

Once we have the target control input [Fd;Md] as stated
in Th. 2, we can then obtain Γi by solving the constrained
optimization problem (6)-(7), which, as mentioned above,
always has a solution for this case of three-quadrotor tool
system, as long as each quadrotor can produce enough thrust
magnitude and the mechanical design satisfies Prop. 1 and
Prop. 2. For this constrained optimization problem (6)-(7),
since it is convex with the structure similar to the well-known
robot grasping under friction-cone constraint, we can utilize
many available fast/efficient algorithms (e.g., [11]).

Simulation results of this three-quadrotor tool system with
spherical joints are presented in Fig. 7, which clearly support
our theoretical claims. Given that the similar setup has been
successfully implemented for the S2QT system (Sec. IV-A),
we expect it would also be possible to implement this S3QT
system, which will be reported in a future publication.

V. CONCLUSIONS
In this paper, we introduce a new system consisting of

multiple quadrotors connected to a tool by spherical joints
to perform tool operation tasks. By analyzing the dynam-
ics structure of the system while respecting the spherical
joint constraints, we reveal a strong relation between the
mechanical design of the system and the (possible) control
design of the system. We also address two control design
examples on the tool-tip pose tracking control, which is
essential to any tool operation tasks. Some future research
directions include: 1) control design and implementation of
more diverse aerial tool operation scenarios, including S3QT
system; 2) improvement on robustness and effectiveness of
the SmQT system for outdoor applications.
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