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Abstract— This paper presents a hybrid force/motion control
framework for quadrotors with a rigid/light tool attached on
it. By transforming the quadrotor dynamics into that of the
tool-tip position y and applying the passive decomposition to
decompose its dynamics into tangential and normal components
w.r.t. a contact surface, we design hybrid position/force control.
We also elucidate the internal dynamics (i.e., the dynamics
hidden from the tool-tip position and yaw angle output and
not directly affected by the control action due to the quadro-
tor’s under-actuation), reveal a (seemingly counter-intuitive)
necessary condition for internal stability (i.e., tool above the
quadrotor, not beneath it), and propose a stabilizing control
action to ensure the angular rates still be bounded while
preventing the finite-time escape. Simulations are performed
to support the theory.

I. INTRODUCTION

The last decade has witnessed a strong surge of inter-

ests in the utilization of quadrotor-type flying robots due

to their affordability and simple mechanical structure, the

relative easiness to control their center-of-mass position,

and the (exciting) promise to expand the current capability

of ground-bound robotic systems into the 3-dimensional

space including operations in the air. Many strong control

techniques have been proposed for the motion control of (the

center-of-mass of) the quadrotors: trajectory tracking control

[1], [2], [3], teleoperation [4], [5], distributed control [6], [7],

to name just few.

These motion control results, however, are mainly for

“passive” tasks (i.e., without mechanical interaction with

external environments/objects: e.g., surveillance, aerial pho-

tography, visual inspection, etc). In contrast, to be truly

useful and versatile robotic platforms, the quadrotors should

be able to perform “active” tasks, involving mechanical

interactions with external environments/objects/humans (e.g.,

grasping [8], manipulation [9], contact operation [10], etc.).

Unfortunately, the control results to enable quadrotors to

perform such “active” task are much rarer as compared to

the plethora of those for their (pure) motion control.

In this paper, we consider the hybrid force/motion control

problem [11] for the quadrotors with a rigid tool attached on

it, i.e., regulating the tool-tip contact force while driving the

tool-tip position on the contact surface. See Fig. 1. Note that,

differently from the typical center-of-mass motion control,
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this hybrid control problem with the tool requires simulta-

neous orientation and translation control of the quadrotor,

which is challenging since, for the quadrotor, its translation

control (via the thrust input) is coupled with its rotational

motion due to its under-actuation property.

More precisely, built upon our recent result in [12], we

first transform the quadrotor’s full dynamics into that of the

tool-tip position y in the Cartesian space. We then apply the

passive decomposition [13], [14] to decompose this tool-tip

y-dynamics along the tangential and normal directions w.r.t.

the contact surface; and, by controlling the former, achieve

the motion control on the contact surface, whereas, by

controlling the latter, control either the approaching motion

to or the contact force against the surface. The desired control

actions, designed for these tangential and normal directions,

are then mapped to the angular acceleration and the thrust

force, with the former realized by the angular torque of the

quadrotor.

Nevertheless, with the tool-tip position control, generally

arises the problem of internal dynamics [15]. This is because,

by controlling the tool-tip position y (and yaw angle), the

pitch and roll motions become “hidden” from the control

formulation, thereby, constitute internal state1. In this paper,

we elucidate this internal dynamics for the general quadrotor

tool operations; reveal a (seemingly counter-intuitive) neces-

sary condition for the internal stability, i.e., the tool should

be above the quadrotor, not beneath it; show that this internal

dynamics can even trigger finite-time escape if not properly

treated; and propose a preliminary control action to stabilize

this internal dynamics (in the sense of bounded velocity)

while preventing the finite-time escape.

The hybrid force/motion control of quadrotor, albeit defin-

ing one of the most basic tool operations, likely because

of the theoretical challenges as stated above, still lacks

thorough understanding of its mechanics and proper control

frameworks for that. Some related works are as follows.

In [16], an extra horizontal propeller is installed on a

quadrotor for a vertical climbing task with the quadrotor

staying horizontal and maintaining horizontal contact. The

hybrid control problem same as ours (with a tool) was

considered in [17], where the quadrotor is considered as a

quasi-static wrench generator, thus, dynamics effect (e.g.,

Coriolis effect), which turn out to be important for the

operation stability as shown in this paper, was not taken into

account there. Another relevant results are [18], [19], with

1Or, equivalently, from the 12-dimensional state of the quadrotors, with
y ∈ ℜ3 and yaw angle as the output, each with relative degree 2, we still
have 4-dimensional internal dynamics.
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Fig. 1. Quadrotor with a tool

the former and the latter respectively considering only the

pitch stability during payload grasping tasks in the sagittal

plane and the stability during a (passive) interaction with the

environment, thus, not directly applicable to the quadrotor

tool-tip hybrid position/force (active) control in E(3) as

considered in this paper. Our current paper also significantly

extends the results of [12], where only the trajectory tracking

and simple tool rotation control (i.e., screw-driver, vertical-

jack) are considered with no force control, and the internal

dynamics is analyzed only for those simple tool rotation

motions.

The rest of this paper is composed as follows. The

quadrotor system modeling with a rigid/light tool attached on

it is given in Sec. II. The hybrid force/motion control, derived

by using the passive decomposition [13], is then presented in

Sec. III. The issue of internal dynamics, its stability property

and a preliminary stabilizing control design are presented in

Sec. IV along with some relevant simulation results. Finally,

conclusion is given in Sec. V.

II. SYSTEM MODELING

Consider a quadrotor with the following dynamics [3]

mẍ = −λRe3 +mge3 + fe (1)

Jω̇ + ω × Jω = τ + τc, Ṙ = RS(ω) (2)

where x ∈ ℜ3 is the quadrotor’s center-of-mass position

represented in the inertial frame {O} := {No, Eo, Do},

m > 0 is the mass, λ ∈ ℜ is thrust, R ∈ SO(3) represents

the rotation of the body-frame {B} := {NB , EB , DB} w.r.t

the inertial-frame {O}, fe ∈ ℜ3 is the tool force represented

in {O}, g is the gravitation constant, and e3 = [0, 0, 1]T is the

basis vector specifying the down direction. Also, J ∈ ℜ3 is

the body-frame rotational inertia, ωi := [ω1, ω2, ω3]
T ∈ ℜ3

is the angular velocity of {B} relative to {O} represented

in {B}, τ, τc ∈ ℜ3 are the torque input for the quadrotor

and the external torque acting at the center-of-mass (defined

below) all represented in {B} frame, and

S(ω) =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 s.t S(ω)ν = ω × ν

for any ν ∈ ℜ3.

Now, suppose that a tool is rigidly-attached to the quadro-

tor as shown in Fig. 1, whose tip y is located from the center-

of-mass as specified by d = [d1, d2, d3]
T ∈ ℜ3 expressed in

the body-frame {B}. Here, we assume d2 = 0 (i.e., tool tip

on the N-D plane). Then, the tool tip position (or output) y
in the inertial frame {O} can be written as

y = x+Rd.

Also, assume that the tool tip y interacts with the environ-

ment through the Cartesian force fe and the moment τe.
Then, the disturbance torque τc in (2) is given by

τc = d×RT fe +RT τe.

In this paper, for the tool operation, we would like to drive

the tool tip position y while also regulating the interaction

force fe.
For the tool-tip position y, we can easily show the follow-

ings:

ẏ = ẋ+ Ṙd = ẋ+RS(ω)d (3)

ÿ = ẍ+R[S(ω̇) + S2(ω)]d (4)

Substituting (4) into (1), we can then obtain the following

dynamics of the tool tip position y [12]:

mÿ −mR[S(ω̇) + S2(ω)]d = −λRe3 +mge3 + fe (5)

which can be rewritten as

mÿ = u+ fe (6)

where the control generation equation is given by

u = mR[S(ω̇) + S2(ω)]d− λRe3 +mge3 (7)

for which mR[S(ω̇)+S2(ω)]d is the force generated by the

rotation of quadrotor represented in end-effector coordinate.

In (7), we can consider the thrust λ and the angular accelera-

tion ẇ as the control inputs [12]. In the next Sec. III, we will

design these controls λ, ẇ to attain the objective of hybrid

position/force control through the tool-tip y of the quadrotor.

The peculiar issue of internal dynamics, associated to this

hybrid position/force control, is then analyzed in Sec. IV,

with some (seemingly counter-intuitive) structural condition

for internal stability.

III. HYBRID TOOL FORCE/POSITION CONTROL

OF QUADROTOR

A. Passive Decomposition

The basic idea of the hybrid motion/force control [11]

is to decompose the system dynamics along the surface

(i.e., motion control) and normal to that surface (i.e., force

control), while assuming that the contact with the surface

is somehow maintained all the time. For the quadrotor tool

operation, however, this assumption of contact be maintained

all the time is too strict (e.g., approaching to the surface)

and also should be satisfied rather than assumed a prior. For

this, here, we utilize passive decomposition [13], [14], with

which we can decompose the tool tip dynamics (5) into the

locked system, representing the system’s motion tangential

to the contact surface; and the shape system, specifying the

system’s motion normal to the contact surface. Then, by

controlling the shape system, we can control the contact
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force, while driving the locked system, can achieve a desire

motion on the surface, even if the contact assumption is not

satisfied at the beginning, as in Fig. 2.

For this, suppose that the working surface can be rep-

resented by a set of holonomic constraints of the tool-tip

position y s.t.,

h(y) = 0

where h(y) ∈ ℜ (i.e., 2-dimensional surface embedded in

3-dimensional Cartesian space of y ∈ ℜ3). We assume this

h be smooth with full-rank Jacobian (i.e., submersion [13]).

Then, we have
∂h

∂y
ẏ = 0 (8)

which shows that if ẏ ∈ null(∂h/∂y) with h(y(0)) = 0, the

tool-tip position y will stay on the surface.

Following [13], [14], at each y, the tangent space (velocity

space TqM) and the cotangent space (i.e., force space T ∗
qM)

of the tool-tip dynamics (5) can split, respectively, s.t

TqM = ∆⊤ ⊕∆⊥ and T ∗

qM = Ω⊤ ⊕ Ω⊥

where ∆⊤ ∈ ℜ3×2 identifies the kernel space of ∂h/∂y (with

∆T
⊤
∆⊤ = I), ∆⊥ ∈ ℜ3×1 identifies the orthogonal comple-

ment of ∆⊤ w.r.t. the inertia metric m of (5), Ω⊤ ∈ ℜ3×2

and Ω⊥ ∈ ℜ3×1 identify the annihilating co-distributions of

∆⊥ and ∆⊤ respectively, and ⊕ is the direct sum.

With these decomposition of the tangent and co-tangent

spaces, we can write the velocity ẏ and force of (5) s.t.,

ẏ = ∆v =
[

∆⊤ ∆⊥

]

(

vl
vh

)

(9)

and also

u+ fe =
[

ΩT
⊤

ΩT
⊥

]

(

ul + fl
uh + fh

)

(10)

for which, since the metric of (5) is Euclidean, following

[14], we can obtain the following closed-form matrix ex-

pressions: with ∆⊤ ≈ null(∂h/∂y), Ω⊥ = ∂h/∂y, ∆⊥ =
ΩT

⊥
(Ω⊥Ω

T
⊥
)−1, and Ω⊤ = (∆T

⊤
∆⊤)

−1∆T
⊤

. We can then

easily show that

∆T
⊤∆⊥ = 0, Ω∆ = I,

dh

dt
= Ω⊥ẏ = Ω⊥∆⊥vh = vh

where the last equation clearly shows that vh is the velocity

in the normal direction to the contact surface, while vl is the

velocity component of the tool-tip dynamics (5) tangential

to the surface.

Differentiating (9), we can then obtain

ÿ = ∆v̇ + ∆̇v.

Inserting this into (6) while left-multiplication by ∆T yields

mv̇l +Ql(y, ẏ)vl +Qlh(y, ẏ)vh = ul + fl (11)

mv̇h +Qh(y, ẏ)vh +Qhl(y, ẏ)vl = uh + fh (12)

where we call (11) locked system (i.e., dynamics along the

tangential directions), while (12) shape system (i.e., dynam-

ics along the normal direction), both of which inherit the La-

grangian structure and passivity from the original dynamics

Fig. 2. Hybrid force/position control of quadrotor with a tool attached at
d = [0.35; 0;−0.3] under the stabilizing ν3-action (26).

(6). From the property of the passive decomposition, we also

have: Ql skew-symmetric, Qh = 0 and QTlh = −Qhl. Refer

to [13], [14] for more details on the passive decomposition.

B. Tangential Motion Control

To drive the tool-tip position y along a certain desired

trajectory on the surface, here, we design a trajectory tracking

control for the locked system (11). For this, define first

ql := ql(y) ∈ ℜ2 to be the local coordinate of the surface,

with the desired trajectory on the surface given by qd(t).
Differentiating this ql, we then have

q̇l :=
∂ql
∂y

ẏ =
∂ql
∂y

∆⊤vl

where B = (∂ql
∂y

∆⊤)
−1 ∈ ℜ2×2 exists at least locally. With

this B, we can further obtain:

vl = Bq̇l, v̇l = Bq̈l + Ḃq̇l

and, substituting these to (11) and left multiplying by B−1,

we have

mq̈l +B−1(mḂ +QlB)q̇l +B−1Qlhvh = B−1(ul + fl)

where we can show that B−1(mḂ + QlB) is skew-

symmetric. We then design the trajectory tracking control

ul s.t.,

B−1ul := B−1Qlhvh +B−1(mḂ +QlB)q̇l+

mq̈d − b(q̇l − q̇d)− k(ql − qd)−B−1fl (13)

with which the closed-loop locked system dynamics be-

comes:

m(q̈l − q̈d) + b(q̇l − q̇d) + k(ql − qd) = 0

implying the stable trajectory tracking on the contact surface.

C. Normal Force Control

For the normal force regulation or approaching motion to

the contact surface, here, we design a control for the shape

system (12). First, for the free-space motion (i.e., before or
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after contact phase), we design the motion control for the

shape system (12) s.t.,

uh := Qlhvl − kvvh − kp(h− h⋆) (14)

where vh = ḣ and h⋆ is a point close (or slightly within)

the contact surface, and kv, kp > 0 are some suitably-tuned

control gains.

On the other hand, if the contact is detected (by using some

force sensing), we switch the shape system control from

the approaching motion control (14) to the force regulation

control:

uh := Qlhvl − fd + ki

t
∫

0

(fh − fd)dτ − bvh (15)

where fd ∈ ℜ is the desired contact force, ki, b > 0 are

control gains, Qlhvl is the cancellation of the coupling term

to ensure the force regulation regardless of the tangential

motion, and the last term bvh is to enhance stability of this

force regulation loop, which can be omitted if the force

control starts with small-enough normal velocity vh. Then,

the closed-loop shape system dynamics is given by

mv̇h = fh − fd + ki

t
∫

0

(fh − fd)dτ − bvh

implying that the force regulation (i.e., f → fd) with vh =
ḣ→ 0. With some more assumptions, we may theoretically

enforce stability of this controller switching (e.g., [20]).

D. Control Decoding

Once we design the hybrid force/motion controllers for

the locked and shape systems (13), (14) and (15), they can

be converted into the control action u for the y-dynamics (6)

s.t.,

ud =
[

ΩT
⊤

ΩT
⊥

]

(

ul
uh

)

(16)

through (10). Here, recall from (7) that the real control is

(λ, ẇ). Thus, to decode this desired control action ud into

(λ, ẇ), we define the desired angular acceleration ω̇d =
[ω̇d

1
, ω̇d

2
, ω̇d

3
]T ∈ ℜ3 and the thrust control λ following (7)

s.t.,

S(d)ω̇d + S(ω)S(d)ω +
λ

m
e3 − gRT e3 = −ûd (17)

which can in fact generate any desired control ûd :=
RTud/m ∈ ℜ3 by (ẇ1, ẇ2, λ) if and only if d3 6= 0 (i.e.,

tool-tip above or below the center-of-mass [12]). Also, note

that ||ûd|| = ||ud/m||.
To drive ẇ → ẇd, we then design the attitude control

torque τ for (2) s.t.,

τ = ω × Jω + J



ω̇ − β



ω −

t
∫

0

ω̇d(s)ds







− τc (18)

where β > 0 is the control gain. The closed-loop attitude

dynamics is then reduced to

ėω + βeω = 0

where eω := ω(t)−
t
∫

0

ω̇d(s)ds, implying that ω̇ → ω̇d.

This however may result in the instability of internal

dynamics. since (17) defines dynamics equation between

ẇ, w and the rotation R as well. As shown in [12] and

below, this internal dynamics can be unstable and also result

in finite-time escape escape if not treated properly. This

issue of internal dynamics was addressed in [12], yet, only

limited to some specific motions (i.e., rotation around roll

or pitch axes). In this work, we generalize the result of

[12] to a general motion of the tool-tip dynamics (5) of the

quadrotor, which in fact is applicable not only to the hybrid

force/motion control but also other control objects as well

(e.g.., trajectory tracking [12]).

IV. INTERNAL DYNAMICS OF QUADROTOR

DURING TOOL OPERATION

A. Internal Dynamics and Equilibrium

As mentioned above, the control decoding (17) defines an

internal dynamics between ẇ, w and R. In this Sec. IV, we

reveal this internal dynamics of quadrotors during the tool

operation and analyze its stability property. Based upon this,

we also suggest a (seemingly counter-intuitive) structural

condition for the necessity of this internal dynamics local

stability and also propose a preliminary control action to

globally stabilize this internal dynamics (in the sense of

bounded w).

For this, notice first that the decoding equation (17)

defines only two-dimensional internal dynamics, since S(d)
is singular with rank(S(d)) = 2. We may then decompose

w s.t.,

ω = [Σ⊤ Σ⊥]ν = Σν (19)

with

Σ :=
1

α





−d3 0 d1
0 α 0
d1 0 d3





where α =
√

d2
1
+ d2

3
and Σ = Σ−1. Here, note that the

last column of Σ characterizes the nullspace of S(d), while

the first two the row space of S(d), the components of w
in each of these spaces respectively given by ν3 and ν1, ν2,

with ν := [ν1; ν2; ν3] ∈ ℜ3.

Using this new variable ν, we can then rewrite (17) s.t.,




−d3ν̇2
−αν̇1
d1ν̇2



+





d1ν
2

1
+ d1ν

2

2
+ d3ν1ν3

−αν2ν3
d3ν

2

1
+ d3ν

2

2
− d1ν1ν3



+





0
0
λ
m



−gRT e3 = −ûd

(20)

which defines the internal dynamics of ν̇1 and ν̇2, as the

last line contains the control input λ and the dynamics of ν̇3
vanishes when combined with S(d) in (17).

Our notion of internal dynamics should also capture the

evolution of the quadrotor’s rotation angles. This, however,

is rather difficult to directly see from (20), as this rotation

motion is given by the rotation matrix R ∈ SO(3). To make

the internal dynamics easier to see, here, we write the internal
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dynamics using the roll, pitch and yaw parameterization.

Then, we have the following relation:

d

dt
[φ, θ, ψ]T = Γω = ΓΣν (21)

where φ, θ, ψ are the yaw, pitch and roll angles, with |θ| <
π/2, and

Γ(θ, ψ) :=





0 sinψ
cos θ

cosψ
cos θ

0 cosψ − sinψ

1 sin θ sinψ
cos θ

sin θ cosψ
cos θ





Then, from (20), the total internal dynamic of the quadro-

tor during the tool operation control is given by

d

dt

(

θ, ψ, ν1, ν2
)T

= F(θ, ψ, ν1, ν2) +
(

0, 0, 1

α
ûd2,

1

d3
ûd1

)T

(22)

where each component of F ∈ ℜ4 is given by

F1 = −d1
α
ν1 sψ + ν2 cψ − d3

α
ν3 sψ

F2 = −d3
α
ν1 +

d1
α
ν1 t θ cψ + ν2 t θ sψ + d1

α
ν3 +

d3
α
t θ cψν1ν3

F3 = −ν2ν3 −
g
α
c θ sψ

F4 = −γ(ν2
1
+ ν2

2
) + ν1ν3 +

g
d3

s θ

where s ⋆ = sin ⋆, c ⋆ = cos ⋆, t ⋆ = tan ⋆, and γ :=
−d1/d3. Here, the dynamics of yaw angle φ does not con-

stitute a part of the internal dynamics, since the expression

of φ̇ contains ν3, which can be assigned arbitrary, thus,

considered as a control input. This fact can also seen by

that, if we choose the system’s output to be (y, φ) ∈ ℜ4, the

relative degree of each variable is two, thus, we only have 4-

dimensional internal dynamics as specified in (22). This then

means that (22) constitutes the full internal dynamics of the

quadrotor, when its tool-tip position y and the yaw angle φ
are controlled according to certain control objectives.

The internal dynamics (22), with ud = 0, possesses two

equilibria: [θ, ψ, ν1, ν2] = [0, 0, 0, 0] and [θ, ψ, ν1, ν2] =
[0, π, 0, 0], the former representing the case of quadrotor’s

center-of-mass located below (or above, resp.) the tool-tip

if d3 < 0 (or d3 > 0, resp.); while the latter the case of

quadrotor’s center-of-mass located above (or below, resp.)

the tool-tip if d3 < 0 (or d3 > 0, resp.).

To see the local stability of each equilibrium, we now per-

form the linearization of F(θ, ψ, ν1, ν2). For the equilibrium

[θ, ψ, ν1, ν2] = [0, 0, 0, 0], we can obtain:









θ̇

ψ̇
ν̇1
ν̇2









=









0 0 0 1

0 0 −d3
α

0
0 − g

α
0 0

g
d3

0 0 0

















θ
ψ
ν1
ν2









(23)

with the characteristic polynomial given by

λ4 +
g(−α2 − d2

3
)

d3α2
λ2 +

gd3
d3α2

= 0.

We then have

λ2
1
=

g

d3
, λ2

2
=
gd3
α2

implying that, if d3 > 0, the origin of the internal dynamics

(22) is unstable.

On the other hand, for the equilibrium [θ, ψ, ν1, ν2] =
[0, π, 0, 0], the linearization of (22) with ûd = 0 is given

by








θ̇

ψ̇
ν̇1
ν̇2









=









0 0 0 −1

0 0 −d3
α

0
0 g

α
0 0

g
d3

0 0 0

















θ
ψ
ν1
ν2









(24)

whose poles satisfy

λ2
1
= −

g

d3
, λ2

2
= −

gd3
α2

implying that the internal dynamics (22) will be unstable in

the neighborhood of [θ, ψ, ν1, ν2] = [0, π, 0, 0] if d3 < 0.

Note then that the instability case for the two linearized

dynamics (23)-(24), that is, d3 > 0 at (θ, ψ) = (0, 0)
for (23) and d3 < 0 at (θ, ψ) = (0, π) for (24) in fact

represent the same situation, that is, the quadrotor’s center-

of-mass x is located above the tool-tip position y. On the

other hand, this observation says that the configuration of the

quadrotor with its center-of-mass x located below the tool-

tip position y can be stable, as frequently observed through

our simulations, although the above linearization analysis

cannot provide a definite answer for its (local) stability.

This analysis shows that, for internal dynamics stability for

the quadrotor tool-operation, the tool-tip should be attached

above the quadrotor, not below it, although the latter would

sound more reasonable at a first glance (and also typically

aimed for in practice).

This can also be explained as follow. If the tool-tip is

below the quadrotor, the center-of-mass of the total system

will be located above the tool-tip position (i.e., d3 > 0), thus,

if we want to, for example, regulate the tool-tip position, the

total system would behave similar to the inverted pendulum

(around ψ = 0) as can be seen from (23) (i.e., saddle with

two unstable and two stable poles). On the other hand, if the

tool is attached above the quadrotor (i.e., d3 < 0), the system

would behave similar to the (stable) downward pendulum as

again can be seen from (23) (i.e., pure imaginary poles).

This seemingly counter-intuitive condition for the internal

dynamics stability is summarized in the following Th. 1,

which extends a similar result in [12] derived only for some

specific tool-operation modes (i.e., pure rotation along the N -

axis or E-axis with the tool-tip position y fixed) to general

quadrotor tool operation.

Theorem 1: Consider the quadrotor performing a tool

operation, with the tool-tip located at d = [d1, 0, d3]
T as

measured in its body NED-frame {B} from its center-

of-mass x. Then, a necessary condition for the internal

dynamics stability at the equilibrium (θ, ψ, ν1, ν2) = 0 is

d3 < 0 (i.e., tool attached above the quadrotor).

B. Stabilizing (ν1, ν2) Internal Dynamics

Now, suppose that we set d3 < 0 to satisfy the necessary

condition for the stability of the equilibrium (θ, ψ, ν1, ν2) =
0. Even though the above linearization analysis does not
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provide a definite answer for the (local) stability of this equi-

librium (θ, ψ, ν1, ν2) = 0, we could still observe from our

simulations that the system behaves at least locally Lyapunov

stable around this equilibrium, mimicking the behavior of a

downward pendulum. We however also observed that, if the

state deviates far from this equilibrium, or if we set d1 to be

much larger than d3, the quadrotor system could go easily

unstable.

This is in fact due to the nonlinear quadratic velocity

coupling in the internal dynamics, which is capable to induce

finite-time escape [21]. To better see this, let us rewrite the

ν1 and ν2 internal dynamics in (20) s.t.,

[

ν̇1
ν̇2

]

=

[

0
−γ(ν2

1
+ ν2

2
)

]

+

[

−ν2
ν1

]

ν3 +

(

ū1
ū2

)

(25)

where γ = −d1/d3, ū1 = −û2/α and ū2 = −û1/d3,

with û = [û1; û2; û3] := RT (ge3 − ud/m). Here, if the

quadrotor behaves as we would like, ud would be bounded,

and so will be ū1 and ū2, which we may then consider as

bounded/measurable disturbance for (25). On the other hand,

the quadratic term with γ in (25), always pushing the point

(ν1, ν2) downward on the (ν1, ν2) plane, can in fact trigger

the finite-time escape when ν2 < 0, whose tendency gets

more intense as |d1/d3| gets larger [21].

Now, suppose that we want to suppress the possibility

of this finite-time escape, without which we would not be

able to achieve stable tool operation by the quadrotors with

d3 < 0. For this, we may then consider ν3 as the control

input to (globally) stabilize the internal dynamics of ν1 and

ν2, which can be indeed arbitrarily assignable (see Sec. IV-

A). However, the effectiveness of this control ν3 for (25) is

limited, as its action is only along the tangential direction

to the circle on the (ν1, ν2) plane with the radius
√

ν2
1
+ ν2

2

and with the center at the origin, as shown by the vector

multiplying ν3 in (25).

Notice from (25) that we can directly control ν1 as long as

ν2 6= 0. However, the quadratic term with γ in (25) indicates

always drives (ν1, ν2) downward in the (ν1, ν2) plane. This

then means that, when ν2 > 0, the control ν3 can easily pull

the state (ν1, ν2) towards the origin, while when ν2 < 0, all

we can do is to drive (ν1, ν2) away from the ν2 axis as fast

as possible so that (ν1, ν2) can come back to the upper side

of the plane (i.e., ν2 > 0) as quickly as possible. To achieve

this property, we propose the following control action for ν3:

ν3 = kν1(1 + ν2
2
) (26)

where k = −ǫd1
d3

, ǫ > 0. It can be seen that, if the disturbance

ūi is not so large, the control action (26) would maintain the

boundedness of (ν1, ν2) by driving the state to the upside

of (ν1, ν2) space, thereby, preventing the issue of finite-

time escape. Note that, once this (desired) ν3-action (26)

is adopted, all (wd
1
, wd

2
, wd

3
) are determined via (19), which

can then be achieved by applying the control torque (18) to

the rotation dynamics (2). Here, notice also from (25) that,

even if we cannot control the direction of control action ν3,

we can control its magnitude and direction however we want.
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Fig. 3. Hybrid position/force control with d = [0.15; 0;−0.4]: stable even
without stabilizing control (26).

Note from (26) that, with a small enough disturbance

ūi, the state (ν1, ν2) of (25) with the control action (26)

would eventually move up to the first and second quadrants

and converge to the ν2-axis in the (ν1, ν2) plane since ν3
is in proportion to ν2

2
. However, along this ν2-axis (i.e.,

ν̇1 = ν1 = 0), the control action ν3 for the ν2-dynamics

(25) vanishes. To analyze system’s behavior along this ν2-

axis, let us consider the full internal dynamics (22) again,

which, with ν1 = 0, then reduces to:

ν̇1 = −
g

α
cos θ sinψ, ν̇2 = −γν2

2
+

g

d3
sin θ

θ̇ = cosψν2, ψ̇ = tan θ sinψν2.

From these equations with ν̇1 = 0, we can then also obtain

sinψ = 0, implying that ψ = 0, as we exclude ψ = π
(unstable equilibrium) with d3 < 0. We then have θ̇ = ν2
and the ν2-dynamics on the ν2-axis is reduced to

θ̈ = −γθ̇2 +
g

d3
sin θ (27)

which is again the dynamics of the (stable) downward

pendulum (d3 < 0) with the quadratic perturbation γθ̇2, that

will be locally marginally stable if d3 < 0 [12].

This control action (26) can then allow us to avoid finite-

time escape even when d1 is much longer than d3 or the

the initial value of (ν1, ν2) is not so small. Recall from Sec.

IV-A that, if (ν1, ν2) is small enough or |γ| = |d1/d3| small

enough, even without this control action (26), the quadrotor

tool operation would be stable if d3 < 0 (i.e., tool above the

quadrotor). See Fig. 3, where the quadrotor tool operation

stability can be maintained with d3 < 0 (d = [0.15; 0;−0.4])
even without stabilizing control (26).

However, if we increase d1/d3 larger, even if d3 < 0,

the tool operation can become unstable with possible finite-

time escape (e.g., d = [0.35; 0;−0.3]: not shown here). This

unstable operation with d3 < 0 can then be stabilized by

the ν3-action (26) as shown in Fig. 4, where we can see

that, at the moment when the tool contacts with the wall,

to produce a (large) counteracting force, the quadrotor tilts,

pushing (ν1, ν2) into ”dangerous area” of the phase-portrait

(i.e., forth quadrant: see Fig. 4). The ν3-action then reacts to

drive (ν1, ν2) to ”safe area” of Fig. 4 (i.e., upside), thereby,

stabilize (ν1, ν2). Of course, even if d1/d3 is small, the tool
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Fig. 4. Hybrid position/force control with d = [0.35; 0;−0.3]: stable
operation with stabilizing control (26).

operation becomes unstable with finite-time escape, when we

set d3 > 0 (e.g., d = [0.2; 0; 0.35]: not shown here).

Note that, when deriving this (ν1, ν2)-stabilizing action

(26), we just consider the effect of gravity embedded in the

disturbance ūi. This then means that the ν3-action (26) can

also stabilize (ν1, ν2) even if d3 > 0 (e.g., d = [0.35; 0; 0.3]:
not shown here), although, in this case, we found the

quadrotor converges to the equilibrium (θ, ψ) = (0, π), again

attaining the stable posture (i.e., with the tool above the

quadrotor).

As can be seen in (22), since the ν3-action does not

consider the rotational motion itself, the quadrotor may

collide with the contact surface, even if the stability of

the operation is ensured. How to include the information

of this rotation motion into the ν3-action (e.g., changing k
depending on the motion of the quadrotor to prevent the

collision), along with its full stability analysis, is a topic for

future research.

V. CONCLUSION

In this paper, the hybrid force/motion control regarding

full nonlinear dynamics and under-actuation of quadrotors

with a light/rigid tool attached on it is presented. We first

transform the quadrotor dynamics into that of the tool-tip

position; and decompose it into the tangential and normal

directions w.r.t. the contact surface by using the passive

decomposition. We then design hybrid force/motion control

by designing controls for each of this tangential and normal

dynamics, and convert it into the desired thrust and angular

torque inputs. We also elucidate the internal dynamics, which

generally arises under a tool-tip position control due to

the quadrotor’s under-actuation, reveal necessary condition

for internal stability (i.e., tool above the quadrotor) and

possibility of finite-time escape, and also propose a prelim-

inary stabilizing action to ensure boundedness of velocities

while preventing the finite-time escape. Some future research

direction includes: 1) full analysis and expansion of the

stabilizing ν3-action (26) for collision-free quadrotor tool

operation; and 2) extension of our results to other types of

aerial robots.
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