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a b s t r a c t

Wepropose a novel control framework to enable a quadrotor to operate a tool attached on it.We first show
that any Cartesian control at the tool-tip can be generated if and only if the tool-tip is located strictly above
or below the quadrotor’s center-of-mass. We then fully characterize the internal dynamics of the spatial
quadrotor tool operation, which arises due to the quadrotor’s under-actuation, and elucidate a seemingly
counter-intuitive necessary condition for the internal stability, that is, the tool-tip should be located above
the quadrotor’s center-of-mass. We further manifest that this internal dynamics can exhibit finite-time
escape and propose a stabilizing action to prevent that. The theory is then illustrated for the problems of
rotating tool operation and hybrid force/position control with relevant simulation results.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

With the recent advances in sensors, actuators, materials,
computing and control technologies, quadrotor-type unmanned
aerial vehicles (UAVs) have gained ability to realize many useful
applications such as aerial photography and movie shooting,
landscape survey, surveillance and reconnaissance, search of areas
after disaster, to name just few. Due to this ability and promise,
the quadrotor has been the focus of attention from research
community and general public alike.

Numerous successful control techniques have been proposed
for the motion control of the quadrotor’s center-of-mass position:
trajectory tracking control (e.g., Aguiar & Hespanha, 2007, Frazzoli,
Dahleh, & Feron, 2000, Ha, Zuo, Choi, & Lee, 2014 and Hua, Hamel,
Morin, & Samson, 2009), formation control (e.g., Abdessameud
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& Tayebi, 2010, Lee, 2012 and Turpin, Michael, & Kumar, 2012),
teleoperation (e.g., Franchi, Secchi, Son, Bulthoff, & Robuffo, 2012,
Ha et al., 2014 and Lee et al., 2013), and even acrobatic flying (e.g.,
Mellinger, Michael, & Kumar, 2012 and Purwin & D’Andrea, 2009).

Different from these motion control results, the main concern
of the current paper is aerial manipulation, an ability crucial to
make the quadrotor truly a versatile aerial robotic platform. We
particularly focus on the case where the quadrotor operates a
simple rigid tool attached on it (e.g., screw-driver, contact probe,
etc.) acting itself as the actuator for the tool. See Fig. 1.We envision
this quadrotor-tool system to be useful for such applications as
inspection and repair of remote infrastructure, operation on high-
rise building exteriors, etc. We also believe this usage of simple
tool would be more promising at least for some application than
using a multi-link actuated robotic arm (with motors) attached to
the quadrotor (e.g., Ghadiok, Goldin, & Ren, 2012, Korpela, Orsag,
Oh, & Pekala, 2013 andYang& Lee, 2014), given the limited payload
of typical quadrotor platforms.

The problem of quadrotor tool operation control, however,
turns out to be much more challenging than that of the motion
control of the quadrotor, as a proper tool control (e.g., tool-tip
position y ∈ ℜ

3 of Fig. 1) would require simultaneous control of
both the translation and rotation of the quadrotor, which, yet, is
under-actuated only with four control inputs. More specifically,
in this paper, we first show that we can generate any Cartesian
control action at the tool-tip y, if and only if this tool-tip y is located
either strictly above or strictly below the quadrotor’s center-of-
mass x ∈ ℜ

3 (i.e., d3 ≠ 0—see Fig. 1). We then reveal that, due to
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the quadrotor’s under-actuation, this Cartesian control generation
gives a rise to four-dimensional internal dynamics (Sepulchre,
Jankovic, & Kokotovic, 1997; Slotine & Li, 1991) and elucidate a
seemingly counter-intuitive necessary condition for its stability,
that is, the tool-tip y should be installed above the quadrotor’s
center-of-mass x (i.e., d3 < 0—see Fig. 1), and not below it aswould
likely be attempted and designed in practice. We further manifest
that this internal dynamics can even exhibit finite-time escape
(Sepulchre et al., 1997) due to some quadratic terms therein and
propose a stabilizing control action to prevent finite-time escape
thereof. Finally, relying on this theoretical finding, we propose
novel control laws for the two perhaps practically most important
tool operation tasks: rotating tool operation (i.e., screw-driver and
vertical jack) and hybrid position/force control against a working
surface.

In contrast to the plethora of quadrotor motion control results
asmentioned above, that for the quadrotor aerial manipulation are
much fewer. Among them, we believe the followings are the most
related ones to our result in this paper.

The issue of stability with perturbed/changing center-of-mass
(e.g., with payload) was considered in Palunko and Fierro (2011)
and Pounds, Bersak, and Dollar (2012). These results, however,
were limited only to the stabilization problem (e.g., stability of
the linearized planar dynamics under the PID-stabilization Pounds
et al., 2012; different output than ours, which produces different
and always stable internal dynamics Palunko & Fierro, 2011), and
not applicable to our problem of spatial quadrotor-tool operation,
where we not only need to achieve the quadrotor stability but also
to drive the tool in the three-dimensional space by recruiting the
quadrotor’s translation and rotation motions.

In Brescianini, Hehn, and D’Andrea (2013) and Hehn and
D’Andrea (2011), the authors considered the problem of a quadro-
tor manipulating a pole and two quadrotors achieving airborne-
transfer of a pole between them. For this, they assumed that the
pole motion is coupled only to the quadrotor center-of-mass po-
sition x, not to its rotation R ∈ SO(3), and also the control in-
puts are the quadrotor’s thrust force λ ∈ ℜ and its angular rate
w ∈ ℜ

3. This in fact is in a stark contrast to our result here, where
the quadrotor’s rotation R must be recruited on top of its trans-
lation x to properly operate the tool, and the internal dynamics,
whichmay exhibit even finite-time escape, arises with the angular
torque input τ ∈ ℜ

3.
Hybrid position/force control problem was studied for the

quadrotor (Bellens, De Schutter, & Bruyninckx, 2012; Darivianakis,
Alexis, Burri, & Siegwart, 2014) and for the ducted-fan UAV
(Marconi & Naldi, 2012), where, however, the quadrotor system
was modeled only as a quasi-static ‘‘black box’’ wrench generator
(Bellens et al., 2012) or simplified as a combination of the
decoupled linearized north-pitch, east-roll, and down dynamics
(Darivianakis et al., 2014); or the dynamics of the ducted-fan UAV
was again restricted to the saggital plane and further linearized
(Marconi & Naldi, 2012). Therefore, the complex (and potentially
unstable) nonlinear and spatial dynamics of the quadrotor-tool
operation (e.g., quadratic terms possibly triggering finite-time
escape, and control action to prevent that by using pitch–roll–yaw
coupling) could be neither revealed nor addressed in those works.

Another line of relevant research is Hauser, Sastry, and Meyer
(1992); Martin, Devasia, and Paden (1996), where the authors
obtained similar internal dynamics and condition for its stability
as ours for PVTOL (planar vertical take-off and landing) systems.
These results (Hauser et al., 1992; Martin et al., 1996), however,
(1) were limited only to the planar dynamics, whose extension to
the spatial operation not only requires substantial development
as done in this paper (from the planar result of Lee & Ha, 2012)
but also turns out necessary for us to design the control action
to prevent finite-time escape; (2) overlooked the issue of finite-
time escape, which, different from the pure motion control of
Fig. 1. Quadrotor-tool system: {O} := {No, Eo,Do
} and {B} := {NB, EB,DB

} are
inertial and body frames, with thrust and gravity along DB and Do directions. Tool is
attached at d = [d1, d2, d3] ∈ ℜ

3 expressed in {B} with d2 = 0.

PVTOL (Hauser et al., 1992; Martin et al., 1996), is crucial for
the aerial tool operation, where the quadrotor can experience
sudden (escape-triggering) surges of its velocity after impacts with
environments/objects (see Fig. 13); and (3) considered a different
problem (i.e., pure motion control of PVTOL) with a focus on a
differentmechanismof non-minimumphase dynamics (i.e., ‘‘small
force’’ due to slant wing-tip jets) and only the position tracking
control by using a specific flat output (i.e., Huygens center of
oscillation). Due to this reason, our results in this paper may be
thought of as an extension (or re-finding) of Hauser et al. (1992)
andMartin et al. (1996) to the quadrotor aerial tool operation with
a complete analysis of its spatial/nonlinear (internal) dynamics and
a novel control action to subdue its finite-time escape.

Portions of this paper were presented in Lee and Ha (2012) and
Nguyen and Lee (2013). The current manuscript integrates, refines
and completes these results (Lee & Ha, 2012; Nguyen & Lee, 2013)
under the unifying theme of quadrotor tool operation, with new
derivation of the internal dynamics, new simulation results, and
significantly improved readability. The current manuscript also
features a newly-designed finite-time escape prevention control
of Nguyen and Lee (2013) and a complete proof of its effectiveness,
presented here for the first time.

The rest of the paper is organized as follows. The dynam-
ics of quadrotor-tool system is derived and the condition to
generate Cartesian control at its tool-tip is established in Sec-
tion 2. The internal dynamics of spatial quadrotor tool operation
is fully characterized in Section 3, with the seemingly counter-
intuitive necessary condition for its stability revealed (i.e., tool
above the quadrotor) and the finite-time escape prevention action
designed/analyzed therein aswell. The obtained theoretical results
are then applied in Section 4 to the problems of rotating tool op-
eration (i.e., screw-driver, vertical-jack) and hybrid position/force
control against a working surface. Section 5 summarizes the paper
with comments on future research.

2. Modeling and control generation of quadrotor-tool system

2.1. Dynamics modeling of quadrotor-tool system

Consider the quadrotor with a rigid tool as shown in Fig. 1.
Similar to Brescianini et al. (2013) and Hehn and D’Andrea (2011),
we assume that the tool is light enough (or counter-balanced
with symmetric design) so that the center-of-mass of the total
quadrotor-tool system is still close to that of the quadrotor. This
assumption is adopted here only for simplicity: the results of this
paper can be similarly derivedwhen these two centers-of-mass are
not coincident with each other.

With this assumption, the dynamics of the quadrotor-tool
system can still be described by the well-known quadrotor
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dynamics:
mẍ = −λRe3 + mge3 + fe (1)

Jω̇ + ω × Jω = τ + τc, Ṙ = RS(ω) (2)
where x ∈ ℜ

3 is the quadrotor’s center-of-mass position repre-
sented in the inertial frame {O} := {No, Eo,Do

}, m > 0 is the
mass, λ ∈ ℜ is the thrust force, R ∈ SO(3) represents the rota-
tion of the body-frame {B} := {NB, EB,DB

} w.r.t. {O}, fe ∈ ℜ
3 is the

tool interaction force represented in {O}, g is the gravitation con-
stant, and e3 = [0, 0, 1]T is the basis vector specifying the down
direction. Also, for (2), J ∈ ℜ

3 is the body-fixed rotational iner-
tia, ω := [ω1, ω2, ω3]

T
∈ ℜ

3 is the angular velocity of {B} relative
to {O} represented in {B}, τ , τc ∈ ℜ

3 are respectively the torque
input and the external torque acting at the quadrotor’s center-of-
mass (defined below) all represented in {B}, and S(ω)ν := ω × ν
for any ν ∈ ℜ

3.
Now, as in Fig. 1, denote by d = [d1, d2, d3]T ∈ ℜ

3 the tool-tip
position y from the quadrotor’s center-of-mass x expressed in {B}.
Then, the tool-tip position y in the inertial frame {O} can bewritten
as
y = x + Rd. (3)
For simplicity, in this paper,we assume d2 = 0.We also assume the
tool is interacting with the environment only through its tool-tip y
via the contact force fe ∈ ℜ

3 and the moment τe ∈ ℜ
3, with other

external effects (e.g., aerodynamics force) much less than them.
Then, τc in (2) is given by τc = d × RT fe + RT τe, with RT fe and
RT τe being fe and τe represented in {B}.

2.2. Cartesian control generation at the tool-tip y

In contrast to themotion control of quadrotor center-of-mass x,
for the quadrotor tool operation, as canbe seen from (3),weneed to
control both the translation x and the rotation R of the quadrotor at
the same time. To better see this, we first transform the dynamics
(1) into that of the tool-tip position y. For this, differentiating (3),
we can obtain
ẏ = ẋ + RS(ω)d, ÿ = ẍ + R[S(ω̇)+ S2(ω)]d
and, injecting these relations to (1), we can achieve the dynamics
of the tool-tip position y s.t.,
mÿ = u + fe (4)
where

u := mR[S(ω̇)+ S2(ω)]d − λRe3 + mge3 ∈ ℜ
3 (5)

is the Cartesian control action at the tool-tip position y, which is
generated by λ ∈ ℜ and ẇ ∈ ℜ

3.
The dynamics (4) with (5) now clearly shows that the tool con-

trol u requires simultaneous control of the quadrotor’s translation
(i.e., λ) and rotation (i.e., ω̇). An immediate question would then
be whether it is possible to generate any desired control u ∈ ℜ

3

via some combination of (λ, ω̇), and, if so, how. Here, we con-
sider ω̇ as the control input with the assumption that τ in (2) is
strong enough, since, in this case, we can directly assign any value
ω̇d

∈ ℜ
3 to ω̇ via the control torque τ in (2) (e.g., via (7)). With ω̇

and λ as the control inputs, we can rewrite (5) s.t., 0 −d3 d2
d3 0 −d1

−d2 d1 0


ω̇1
ω̇2
ω̇3


+

1
m

0
0
λ



= S2(ω)d + gRT e3 −
1
m

RTu (6)

where we use S(ω̇)d = −S(d)ω̇ and u ∈ ℜ
3 is the desired Carte-

sian control at the tool-tip position y (4). The following Theorem 1
is a direct consequence of the structure of this control generation
equation (6).
Theorem 1. Given (λ, ω̇1, ω̇2, ω̇3) as the control input, the left hand
side (LHS) of (6) can produce any desired Cartesian control u ∈ ℜ

3 if
and only if d3 ≠ 0.

Proof. For sufficiency, note that, if d3 ≠ 0, we can generate any
value u for the first and second lines in the LHS of (6) by using
ω̇2, ω̇3, while that for the last line by usingλ. For necessity, suppose
d3 = 0. Then, the first and second lines of the LHS are generated
only by ω̇3 (even if d2 ≠ 0), implying that the LHS of (6) cannot
produce arbitrary control action u. �

This Theorem1 implies that, to achieve a desired control u ∈ ℜ
3

for the y-dynamics, we must have d3 ≠ 0, i.e., the tool-tip position
y, when expressed in {B}, needs to be strictly above, or strictly
below, the quadrotor’s center-of-mass x. This Theorem 1 is valid
even if d2 ≠ 0.

If d3 ≠ 0, we can then utilize (6) to compute the thrust com-
mand λ and angular acceleration command ω̇d

1, ω̇
d
2 for any given

desired tool-tip Cartesian control u ∈ ℜ
3. The remaining command

ω̇d
3 is redundant and can be simply set to be zero or utilized for

other purpose (e.g., see Section 3.3). To achieve ω̇ → ω̇d, we may
then use the following simple PI-control with feedforward cancel-
lation:

τ = ω × Jω + J

ω̇d

− k

ω −

 t

0
ω̇d(s)ds


− τc (7)

where k > 0 is the I-control gain. The closed-loop attitude dynam-
ics is then given by ėω + keω = 0, with eω := ω(t) −

 t
0 ω̇

d(s)ds,
implying ω̇ → ω̇d, as long as τ is powerful enough as assumed
so above. Since the attitude dynamics (2) is fully-actuated and
passive, many control techniques can also be used here even in
the presence of uncertainty or absence of force sensing (e.g., slid-
ing mode control Slotine & Li, 1991 and Spong, Hutchinson, &
Vidyasaga, 2006).

It may then appear that, as long as d3 ≠ 0, we can generate any
arbitrary control u and drive the y-dynamics (3) however wewant.
This, however, may not be possible, since the control generation
equation (6) defines a dynamic relation among ẇ(≈ẇd), w
and R, which may be unstable. As shown in Section 3.1, this
dynamics, unobservable from the y-dynamics, in fact constitutes
the internal dynamics (Sepulchre et al., 1997; Slotine & Li, 1991) of
the quadrotor tool operation, which arises because the tool-tip y
control requires both the translation and attitude control, yet, the
quadrotor is under-actuated only with the four actuations (λ, τ ) ∈

ℜ
4. In the next Section 3, we analyze this internal dynamics of

quadrotor tool operation, reveal a (seemingly counter-intuitive)
structural condition to avoid internal instability, show that this
internal dynamics can exhibit finite-time escape, and propose a
stabilizing control to prevent that.

3. Internal dynamics and stability of quadrotor tool operation

3.1. Internal dynamics

Although Eq. (6) contains three rows, all of them may
not constitute the internal dynamics, since: (1) the arbitrarily-
assignable thrust input λmay effectively eliminate one-dimension
of the internal dynamics (6); and (2) rank[S(d)] = 2, thus, only
two-dimensional vector space among all possible ẇd

∈ ℜ
3 are

relevant to the internal dynamics. To overcome this geometric
complication, instead of ω, we utilize the transformed angular
velocity ν := [ν1, ν2, ν3]

T
∈ ℜ

3 as defined by

ω =
1
d̄

−d3 0 d1
0 d̄ 0
d1 0 d3

 ν =: Σν (8)
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where d̄ =:


d21 + d23 and Σ = ΣT

= Σ−1. See Fig. 2 for an
illustration of ν and ω. Here, with d2 = 0 as assumed above, the
last column ofΣ characterizes the nullspace of S(d), while the first
two the row space of S(d). Different velocity space decompositions
were also used in Hehn and D’Andrea (2011, virtual body frame)
and Lee and Li (2013, passive decomposition) to facilitate dynamics
analysis and control design.

Using the transformed angular velocity ν of (8), we can rewrite
(6) s.t.,−d3ν̇2

−d̄ν̇1
d1ν̇2

+

d1ν21 + d1ν22 + d3ν1ν3
−d̄ν2ν3

d3ν21 + d3ν22 − d1ν1ν3

+
1
m

0
0
λ



= gRT e3 −
1
m

RTu (9)

where the first two rows define the internal dynamics of ν̇1 and
ν̇2, yet, the third row that of none, since we can arbitrarily assign
λ to match the third row of RHS without creating any internal
dynamics. Note also that there is no internal dynamics of ν̇3. This
ν̇3 in fact vanishes when (8) is combined with (6), which can also
be seen from Fig. 2 that ν̇3 induces no motion at the tool-tip y.

The internal dynamics in (9), yet, is rather difficult to analyze,
since the quadrotor’s rotation is expressed by the non-vector
quantity R ∈ SO(3). To render (9) more amenable to analysis,
here, we parameterize R using the yaw, pitch and roll angles,
(φ, θ, ψ) =: q ∈ ℜ

3, that is,

R =

cφcθ −sφcψ + cφsθsψ sφsψ + cφsθcψ
sφcθ cφcψ + sφsθsψ −cφsψ + sφsθcψ
−sθ cθsψ cθcψ



with |θ | < π/2 and s⋆ = sin ⋆, c⋆ = cos ⋆ (Spong et al., 2006).
We then have the following kinematic relation:φ̇θ̇
ψ̇

 = Γω = ΓΣν,

Γ (θ, ψ) :=
1
cθ

 0 sψ cψ
0 cθcψ −cθsψ
cθ sθsψ sθcψ

 (10)

and, combining (9) and (10) with the fact that gRT e3 is a function
of only (θ, ψ), we can obtain the following four-dimensional
dynamics:

d
dt

 θψν1
ν2

 = F (θ, ψ, ν1, ν2)+


−

d3sψ
d̄
ν3

d1+d3tθcψ
d̄

ν3
1
d̄
u′

2 − ν2ν3
1
d3
u′

1 + ν1ν3

 (11)

where the drift vector field F (θ, ψ, ν1, ν2) is given by

F (θ, ψ, ν1, ν2) =


−

d1
d̄
ν1sψ + ν2cψ

−
d3
d̄
ν1 +

d1
d̄
ν1tθcψ + ν2tθsψ

−
g
d̄
cθsψ

−γ (ν21 + ν22 )+
g
d3
sθ

 ∈ ℜ
4

with γ := −
d1
d3
, u′

= [u′

1, u
′

2, u
′

3]
T

:=
1
mRTu, and t⋆ := tan ⋆.
Fig. 2. Illustration of angular velocity ω = [ω1, ω2, ω3]
T and the transformed

angular velocity ν = [ν1, ν2, ν3]
T .

This four-dimensional dynamics (11) completely describes
the internal dynamics of the quadrotor tool operation, which
arises due to the quadrotor’s under-actuation. In fact, this four-
dimensional dynamics (11) is the internal dynamics (Slotine &
Li, 1991), if we choose the output (y, φ) ∈ ℜ

4 and the state
(y, ẏ, q, ν) ∈ ℜ

12 with the input (λ, τ ) ∈ ℜ
4. More precisely,

(1) each of these output variables has relative degree two, thus, the
internal dynamics should be of four-dimension as (11); (2) the in-
ternal dynamics (11), which specifies the ‘‘internal’’ quadrotor ro-
tation necessary to drive the tool-tip position y, can be obtained by
twice-differentiating y with (10); and (3) the yaw angle φ has rel-
ative degree two with ν̇3 as the input, which unlike ν̇2, ν̇3 in (11),
is not required for the control generation equation (9), thus, any
value can be assigned to ν̇3 without affecting the internal dynam-
ics and also the generation of the control u for the y-dynamics (4).

3.2. Structural condition of zero dynamics instability

In this Section 3.2, we analyze stability property of the internal
dynamics (11) around its equilibriums and elucidate a seemingly
counter-intuitive structural condition for its stability, i.e., the tool-
tip y should be installed above the quadrotor’s center-of-mass x,
not below it. For this, we first define the zero dynamics by con-
straining (11) to the zero output manifold (i.e., (y, φ) ≡ 0). More
specifically, we obtain the following conditions for the internal dy-
namics (11): ü′

1 = ü′

2 = 0 from ÿ = 0 in (4); and

d3ν3 = −d1ν1 − d̄ν2 tanψ

from φ̇ = 0 in (10). Applying these conditions to (11), we can
achieve the zero dynamics as follows:

d
dt

 θψν1
ν2

 =


1
cψ ν2

−
d̄
d3
ν1 + γ ν2tψ

−
g
d̄
cθsψ − γ ν1ν2 +

d̄
d3
ν22 tψ

g
d3
sθ −

d̄
d3
tψν1ν2 − γ ν22

 . (12)

From (12), we can show the zero-dynamics possesses the two
equilibriums: [θ, ψ, ν1, ν2] = [0, 0, 0, 0] and [θ, ψ, ν1, ν2] =

[0, π, 0, 0], with the former representing the quadrotor upright
hovering posture, while the latter the upside-down hovering pos-
ture. See Fig. 3. We linearize the zero-dynamics (12) around these
two equilibriums. First, around the equilibrium [θ, ψ, ν1, ν2] =

[0, 0, 0, 0], we can obtain:

 θ̇ψ̇
ν̇1
ν̇2

 =



0 0 0 1

0 0 −
d̄
d3

0

0 −
g
d̄

0 0

g
d3

0 0 0


 θψν1
ν2

 (13)
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Fig. 3. Unstable configuration of zero-dynamics: (θ, ψ, ν1, ν2) = (0, 0, 0, 0)with
d3 > 0 (left); and (θ, ψ, ν1, ν2) = (0, π, 0, 0)with d3 < 0 (right).

with the characteristic polynomial given by λ4 − 2 g
d3
λ2 +

g2

d23
= 0

and the four eigenvalues given by λ2 =
g
d3
, implying that, if

d3 > 0, the zero-dynamics is unstable around the equilibrium
[θ, ψ, ν1, ν2] = [0, 0, 0, 0].

On the other hand, for the equilibrium [θ, ψ, ν1, ν2] =

[0, π, 0, 0], the linearization of the zero-dynamics (12) yields

 θ̇ψ̇
ν̇1
ν̇2

 =



0 0 0 −1

0 0 −
d̄
d3

0

0
g
d̄

0 0

g
d3

0 0 0


 θψν1
ν2

 (14)

with the characteristic polynomial given by λ4 + 2 g
d3
λ2 +

g2

d23
= 0

and the four eigenvalues given by λ2 = −
g
d3
, implying that, if

d3 < 0, the zero-dynamics (11) will be unstable around the equi-
librium [θ, ψ, ν1, ν2] = [0, π, 0, 0]. Note that these two unsta-
ble equilibriums of the zero-dynamics, (θ, ψ, ν1, ν2) = (0, 0, 0, 0)
with d3 > 0 for (13) and (θ, ψ, ν1, ν2) = (0, π, 0, 0) with d3 < 0
for (14), represent the same configuration, that is, the quadrotor
hovers with the tool-tip y located below the quadrotor’s center-of-
mass x. See Fig. 3.

This observation then shows that, for internal stability of the
quadrotor tool operation, the tool-tip y should be located above the
quadrotor’s center-of-mass x, not below it, even though the latter
would appear more reasonable at a first glance and also typically
aimed for in practice. The above analysis also shows that, if y is
located above x, the internal dynamics may be stable, which we
indeed observed from our simulation with some viscous damping
effect (e.g., aerodynamics dissipation),when the quadrotor angular
velocity ω is not so fast and |γ | = |d1/d3| is not so large. This
seemingly counter-intuitive necessary condition for the internal
dynamics stability is summarized in the following Theorem 2.

Theorem 2. Consider the quadrotor tool operation system (1)–(2)
with a rigid/light tool attached with its tool-tip y located at d =

[d1, 0, d3]T as measured in {B} from the quadrotor center-of-mass x.
Then, a necessary condition to avoid internal dynamics instability is
d3 < 0 for the equilibrium (θ, ψ, ν1, ν2) = (0, 0, 0, 0) or d3 > 0
for the equilibrium (θ, ψ, ν1, ν2) = (0, π, 0, 0), both implying the
tool-tip y should be above the center-of-mass x, not below it.

This Theorem 2 can also be understood as follow. If the tool-tip
y is located below the quadrotor’s center-of-mass x (e.g., d3 > 0 for
upright hovering posture) and if we want, for example, to regulate
the tool-tip position, the thrust and angular torque inputs will be
used up to maintain this tool-tip position, yet, the gravity will still
pull the systemdown similar to the case of an inverted pendulum—
see Fig. 4. This similarity is also evident in (13), where the zero
mg

mg

e3
e3

d3<0

d3>0

e2e2

y
y

x

x

Fig. 4. Effect of d3 on internal dynamics: (1) if d3 > 0, gravity serves positive-
feedback similar to inverted pendulum; (2) if d3 < 0, negative-feedback similar to
downward pendulum.

dynamics has a saddle equilibrium with two unstable and two
stable poles (i.e., (13) at (θ, ψ, ν1, ν2) = (0, 0, 0, 0) with d3 > 0).
On the other hand, if the tool-tip y is above x (e.g., d3 < 0 for
upright hovering posture), the systemwould behave similar to the
stable downward pendulum as again can be seen from (13) with
pure imaginary poles when d3 < 0 (right plot of Fig. 4). Note also
that Theorem 2 holds regardless of any ν3-action (16).

Even if we upheld the necessary condition of Theorem 2,
sometimes, we could still observe (fairly severe) instability of
the internal dynamics, particularly when the quadrotor’s angular
velocity ω gets faster with a large |γ | = |d1/d3|. This is in fact due
to the quadratic terms (i.e., γ (ν21 + ν22 )) in (11), which can trigger
finite-time escape (Sepulchre et al., 1997). In the next Section 3.3,
we analyze this finite-time escape andpropose a stabilizing control
action to prevent that.

3.3. Finite-time escape prevention

To facilitate analysis of finite-time escape and synthesis of the
control action to prevent that, we rewrite the dynamics of ν1 and
ν2 in (11) s.t.,
ν̇1
ν̇2


=


0

−γ (ν21 + ν22 )


+


0 −ν3
ν3 0


ν1
ν2


+


ū1
ū2


(15)

where γ = −
d1
d3
, ū1 :=

−gcθsψ+u′
2

d̄
and ū2 :=

gsθ+u′
1

d3
. Here, without

loss of generality, we assume d1 > 0. We also choose d3 < 0 to
respect the necessary condition for internal stability of Theorem 2.
We then have γ > 0. We can then see from (15) that the quadratic
terms with γ in (15) will always pull (ν1, ν2) downward in the
(ν1, ν2)-plane (see Fig. 5) and,moreover, can induce finite-time es-
cape when ν2 < 0. We can see from (15) that this tendency would
be more intense with larger |γ | = |d1/d3| and faster (ν1, ν2). We
may also consider ū1, ū2 in (15) as bounded disturbance, as the de-
sired control u is bounded (with u′

= (1/m)RTu).
To prevent the finite-time escape, here, we attempt to utilize

ν3 to regulate (ν1, ν2). Recall from Section 3.1 that this ν3 can
be arbitrarily assigned without affecting the tool-tip control u
generation (6). This ν3-action, however, is limited, as its action
is embedded in the skew-symmetric matrix in (15), thus, is only
norm-preserving with its direction always tangential to the circle

in the (ν1, ν2)-plane with the radius of

ν21 + ν22 and the center at

the origin.
With this circumferential ν3-action, we may still think of the

following strategy. Since the quadratic termswith γ in (15) always
pull down (ν1, ν2) along the ν2-axis and can trigger the finite-time
escape only when ν2 < 0, when ν2 proceeds down along the ν2-
axis, if we can apply large enough ν3-action to ‘‘swing up’’ (ν1, ν2)
back to the upper-side of the (ν1, ν2)-plane (i.e., ν2 ≥ 0) in a
suitable way to ensure the boundedness of ν1 as well, we would be
able to prevent the finite-time escape even with only this limited
ν3-action.
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Fig. 5. Invariant set S with finite-time escape prevention.

To achieve this strategy, we design the ν3-action s.t.,

ν3 := γ ν1(1 + ν22 )+ ρsgn(ν1) (16)

where ρ := 2η − γ ν2, with η > 0 defined s.t., η > (|ū1(t)| +

|ū2(t)|)/2 ∀t ≥ 0, and sgn(ν1) = 1 if ν1 ≥ 0 and sgn(ν1) = −1 if
ν1 < 0.

Theorem 3. Consider the dynamics (15) under the ν3-action (16)
with γ ≥ 0. Then, there exists a positive-invariant compact set S ⊂
(ν1, ν2) | ν21 + ν22 ≤


η

γ
+ 5

2
+

η2

γ 2


s.t., if (ν1(0), ν2(0)) ∈ S,

(ν1(t), ν2(t)) ∈ S ∀t ≥ 0.

Proof. Let us first define the compact set S with its boundary given
by ∂S :=


i ∂Si +


i ∂S

′

i , where

∂S1 := {(ν1, ν2) | ν2 = −ν1 − 1, 0 ≤ ν1 ≤ 1}
∂S2 := {(ν1, ν2) | ν2 = −2, 1 ≤ ν1 ≤ 3}

∂S3 :=


(ν1, ν2) | ν1 = ν2 + 5,−2 ≤ ν2 ≤

η

γ


∂S4 :=


(ν1, ν2) | ν21 + ν22 =


η

γ
+ 5

2
+

η2

γ 2 ,

η

γ
≤ ν2 ≤


η

γ
+ 5

2
+

η2

γ 2


and ∂S′

i := {(−ν1, ν2) | (ν1, ν2) ∈ ∂Si}. See Fig. 5
To show that the set S is positive-invariant, here, we show that

the vector field (ν̇1, ν̇2) of (15) under the ν3-action (16) always
points inward S along its boundary ∂S. For this, note that ν3 in (16)
is an odd function w.r.t. ν1. This then implies that ν̇1 and ν̇2 in (15)
are respectively odd and even functions w.r.t., ν1. Therefore, if we
can show that (ν̇1, ν̇2) points inward S along the right half of ∂S,
the same will also be true for the other half ∂S′. We now analyze
the vector field (ν̇1, ν̇2) along each segment ∂Si of the right half
of ∂S.
• On the boundary ∂S1 (see Fig. 6(a)), we have

ν̇1 = −γ ν1ν2(1 + ν22 )− ρν2 + ū1

= γ ν1|ν2|(1 + ν22 )+ ρ|ν2| + ū1 > ρ|ν2| + ū1 > 0

with ρ = γ |ν2| + 2η > |ū1| and |ν2| ≥ 1 on ∂S1. On the other
hand, on ∂S1, ν̇2 can be positive or negative. If ν̇2 ≥ 0, the vector
(ν̇1, ν̇2) will point inward S, thus, here, we only consider the case
ν̇2 < 0, for which (ν̇1, ν̇2) points inwards if

ν̇1 ≥ −ν̇2 (17)

or, using (15) with (16),

γ ν1|ν2|(1 + ν22 )+ ρ|ν2| + ū1 ≥ −γ ν22 (ν
2
1 − 1)− ρν1 − ū2.
(a) (ν̇1, ν̇2) on ∂S1 . (b) (ν̇1, ν̇2) on ∂S2 .

Fig. 6. The vector field (ν̇1, ν̇2) points inward the set S along the boundaries ∂S1
and ∂S2 .

Since, on ∂S1, we have γ ν1|ν2|(1+ν22 ) ≥ 0 and−γ ν22ν
2
1−ρν1 ≤ 0,

(17) will be satisfied if

ρ|ν2| + ū1 ≥ γ ν22 + |ū2| (18)

which is indeed true, since, substituting ρ = 2η + γ |ν2| on ∂S1
into (18) yields

γ ν22 + 2η|ν2| + ū1 ≥ γ ν22 + |ū2|

which holds, since, on ∂S1, |ν2| ≥ 1, thus, 2η|ν2| > |ū1| + |ū2|.
This shows that, on segment ∂S1, the vector field (ν̇1, ν̇2) points
inwards the set S, as depicted in Fig. 6(a).
• On the boundary ∂S2 (see Fig. 6(b)), from (15) with (16), we have

ν̇1 > ρ|ν2| + ū1 = 2η|ν2| + γ |ν2|
2
+ ū1 > 0

ν̇2 ≥ ρν1 + ū2 = (2η + γ |ν2|)|ν1| + ū2 > 0

since ν1 ≥ 1, ν2 = −2 and ρ = 2η + γ |ν2| > |ū1| + |ū2| on ∂S2,
implying that the vector (ν̇1, ν̇2) on the boundary ∂S2 also points
into S, as illustrated in Fig. 6(b).
• On the boundary ∂S3 (see Fig. 7), we have:

ρ = 2η − γ ν2 ≥ η (19)

with −2 ≤ ν2 ≤ η/γ . Then, similar to the case of ∂S2 above, we
can show that

ν̇2 > ρν1 + ū2 > 0

since ν1 ≥ 3 on ∂S3. On the other hand, along the boundary ∂S3,
ν̇1 can be positive or negative. If ν̇1 is negative then the vector field
points inwards. Thus, here, we only need to consider the case of
ν̇1 ≥ 0.

When ν̇1 ≥ 0, the vector (ν̇1, ν̇2)will point into S if

ν̇2 ≥ ν̇1 (20)

or, using (15) with (16) and (19), we can rewrite (20) s.t., γ ν22 (ν
2
1 −

1) − γ ν1ν2 + 2ην1 + ū2 ≥ −γ ν1ν2(1 + ν22 ) + γ ν22 − 2ην2 + ū1,
which can be rearranged as

γ ν22 (ν
2
1 − 2)+ 2ην1 + ū2 ≥ −γ ν1ν

3
2 − 2ην2 + ū1. (21)

Now, for the boundary ∂S3, let us first consider the upper segment
overlapped with the region {(ν1, ν2) | ν1 ≥ 5, ν2 ≥ 0}. Then, since
γ ν1ν

3
2 + 2ην2 ≥ 0 with ν2 ≥ 0 and ν1 > 0, (21) will be attained if

γ ν22 (ν
2
1 − 2)+ 2ην1 + ū2 ≥ ū1

which is satisfied, since ν1 ≥ 5 on this segment. On the other hand,
for the lower segment of ∂S3 within the region {(ν1, ν2) | 3 ≤ ν1 <
5,−2 ≤ ν2 < 0}, we can rewrite (21) as

γ ν22 (ν
2
1 − |ν2|ν1 − 2)+ 2η(ν1 − |ν2|)+ ū2 ≥ ū1
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Fig. 7. The vector field (ν̇1, ν̇2) along the boundary ∂S3 .

which is also satisfied, since on this segment, ν21 − |ν2|ν1 − 2 ≥ 1
and ν1−|ν2| ≥ 1. Thus proves that, on the boundary ∂S3, the vector
(ν̇1, ν̇2) points into the set S.
• For the arc segment ∂S4, let us define

V :=
1
2
(ν21 + ν22 )

which then assumes a constant value along this segment, that is,
V (ν1, ν2) =

1
2 [(η/γ + 5)2 + (η/γ )2] > 25/2,∀(ν1, ν2) ∈ ∂S4.

Differentiating this V with (15) with the fact that η ≥


ū2
1 + ū2

2,
we can then obtain

V̇ = −γ ν2(ν
2
1 + ν22 )+ (ū1ν1 + ū2ν2)

≤ −η(ν21 + ν22 )+ 2η

ν21 + ν22 ≤ −η(2V − 2

√
2V ) < 0

since, on ∂S4, ν2 ≥ η/γ and
√
V > 5/

√
2. This then implies that

(ν1, ν2) evolves into the set S when it is on the boundary ∂S4—see
Fig. 8. �

This Theorem 3 shows that the ν3-action (16), albeit limited
as stated above, can indeed prevent the finite-time escape of
the internal dynamics as long as (ν1(0), ν2(0)) ∈ S. This also
means that, using the ν3-action (16) with (ν1(0), ν2(0)) ∈ S and
also with the necessary condition of Theorem 2 satisfied, we can
achieve any desired tool-tip position control u ∈ ℜ

3 via (6) while
avoiding the issue of internal dynamics instability. Mathematical
proof of this finite-time escape is not available at the moment,
although we indeed experienced many of its occurrences during
our simulation study (e.g., see Fig. 13 and Lee & Ha, 2012, Fig. 3),
which our ν3-action turns out to be able to adequately subdue.
A precise/mathematical treatment of this finite-time escape itself
would require a significant technical development as in Getz and
Jacobson (1977) and is beyond the scope of this paper.

The ν3-action (16) contains the discontinuous function sgn(·),
which poses an implementation problem since our control input
is (λ, τ ) ∈ ℜ

4. For this, we may replace sgn(ν1) by its continu-
ous approximation (e.g., sat(ν1/ϵ) or 2

π
atan(ν1/ϵ), with approxi-

mation layer ϵ > 0). Note that this approximation would affect
the ν3-action (16) only around the two intersection points between
the ν2-axis and the boundary ∂S (see Fig. 5), implying that the re-
sultant performance degradation would be only mild. In fact, we
found, during our simulations (e.g., Section 4.2), that 2

π
atan(ν1/ϵ)

works just fine when used instead of sgn(ν1). Note also that, if
the task is formulated s.t., (ν1, ν2) is kept small enough (e.g., Sec-
tion 4.1), the ν3-action would not be necessary, since, in this case,
the quadratic terms with γ in (15) will be dominated by other
(e.g., linear) terms therein. The necessary condition of Theorem 2,
yet, should still be enforced even in this case to avoid internal dy-
namics instability. See Section 4.1.

Our proposed ν3-action (16) does not interfere at all with the
generation of the tool-tip Cartesian control u ∈ ℜ

3, since, as can
be seen from (9), any desired control u ∈ ℜ

3 can be generated
only by using (ν̇1, ν̇2, λ) regardless of ν3. This ν3-action, however,
Fig. 8. The vector field (ν̇1, ν̇2) along the boundary ∂S4 .

will produce some extra rotational motion of the quadrotor (e.g., φ̇
via (10)) on top of those necessary to generate the u-control
through (9). This extra motion may then induce collision when the
quadrotor is interacting with external environments/objects.

One possible approach to avoid such collision, and further
to endow the quadrotor-tool system with collision avoidance
capability, is to activate the ν3-action only when (ν1, ν2) is
outside S, while, when inside S, exploit the ν3-action for collision
avoidance. This idea thennaturally suggests to switch the ν3-action
(16) with ∂S as its switching surface. For this, the proposed ν3-
action (16) is not directly applicable, since, with (λ, τ ) as the
control input, we cannot instantaneously switch ν3 on ∂S. Instead,
we would need to define a new switching surface ∂Sw ∈ S, whose
gap from ∂S should be designed with the convergence rate of
the ν3-control and (ν̇1(t), ν̇2(t)) taken into account, so that, even
with the (indirect) control τ , the ν3-action is guaranteed to be
activated before (ν1, ν2) escapes from S, while alsominimizing the
gap between ∂Sw and ∂S. How to design such switching ν3-action
with an optimal ∂Sw is a topic of future research.

4. Illustrative examples

In this Section 4, we apply our theoretical results to the two
perhaps most practically-important aerial tool operation tasks,
namely, (1) rotating tool operation, where the quadrotor itself
serves as the actuator for some rotating tool (e.g., screw-driver,
vertical-jack); and (2) hybrid force/position control, where the
quadrotor controls its tool-tip y to follow some desired trajectory
on a surface while exerting certain desired force normal to it.

4.1. Rotating tool operation

We consider two most representative rotating tool operations:
(1) screw-driver operation (i.e., rotation about NB-axis) and (2)
vertical-jack operation (i.e., rotation about the EB-axis). To operate
these tools, the quadrotor should rotate itself while maintaining
the contact at the tool-tip y ∈ ℜ

3. This, however, is not possible for
the quadrotor, since, being under-actuated, it cannot control the
tool rotation ω and the tip position y at the same time.

To overcome this difficulty, here, we assume an external
contact-keeping mechanism. One example of such mechanisms,
assumed for the simulation here and also envisioned for our
implementation, is a compliant coupling with magnetic-snapper.
We then model the contact force fe ∈ ℜ

3 in (1) s.t., fe := −Bẏ − Ky
with the contact point at y = 0. On the other hand, since τ is
assumed to be strong enough, the quadrotor can generate any
desired tool rotationwhile overcoming the contact torque τc in (2).
We also do not implement the ν3-action (16), as all the rotating tool
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operations here (with d3 < 0) aremild enough (with small enough
ω), thus, do not trigger the finite-time escape. For the vertical-jack
operation with d3 > 0, we however indeed observed the finite-
time escape phenomenon when the ν3-action is deactivated—see
(Lee & Ha, 2012) for more details on this.

Consider first the case of screw-driver operation. For simplicity,
we assume this operation is along the NB-axis from R(0) = I while
keeping NB

≈ No and y ≈ 0. The quadrotor’s rotation matrix R is
then given by

R(ψ) =

1 0 0
0 cosψ − sinψ
0 sinψ cosψ



withω = [ψ̇; 0; 0], whereψ is the roll angle. From (4)–(5), we can
see that, if we incur this rotational motion ω, it will generate some
contact force u, that may perturb the tool-tip contact. To avoid any
tool-disengagement, we then attempt to minimize this perturbing
force u (5), or, equivalently, to minimize the magnitude of

RTu =

 0
−md3ψ̈ + mg sinψ

−md3ψ̇2
− λ+ mg cosψ

 (22)

so that it can still be absorbed by the contact-keeping mechanism
(i.e., with small ∥fe∥).

This then suggests that, if we assign ψ, ψ̈ to satisfy the second
line of (22) and λ to eliminate the third line of (22), we can achieve
rotation while ensuring RTu = 0 to maintain the tool-tip contact
during the operation. Note here the similarity of the second line of
(22) with the pendulum dynamics as observed in Section 3.2. This
dynamics (22) is in fact the internal dynamics (11) constrained by
φ̇ = θ̇ = 0.We then set d3 < 0 according to Theorem 2 and define
the desired roll angle ψd(t) s.t.,

ψd(t) := ψmax sinωnt (23)

with ωn :=


g

|d3|
, which is the solution of the linearized dynamics

of the second line of (22) about ψ = 0. We also choose the thrust
command λ s.t.,

λ = mg cosψ − md3ψ̇2

to eliminate the third line of (22), with the attitude torque τ
defined similar to (7) s.t.,

τ = ω × Jω + J[ω̇d − b(ω − ωd)− k(q − qd)] − τc

with ωd = [ψ̇d; 0; 0] and qd(t) = [ψd(t); 0; 0].
Simulation results of this screw-driver operation are presented

in Fig. 9, wherewe can see that: (1) the quadrotor center-of-mass x
makes a circular trajectory, evidencing the tool rotation (with the
tool-tip y fixed); (2) both fe and y are small, yet, not perfectly zero,
since the trajectoryψd (23) is a solution of the linearized dynamics,
not the original nonlinear dynamics in (22), and also we inject
some parametric uncertainty when computing the control action
(λ, τ ); and (3) control actions (λ, τ1, τ2) are relatively aggressive.
To reduce this aggressiveness, we perform the same simulation
with the rotation frequency slowed down to ωn/2. The results are
overlaid in Fig. 9, where we can see that: (1) the control action
becomes substantially smoother than before; (2) fe and y become
larger, as ψd, in this case, differs further from the solution of the
original internal dynamics in (22); (3) the circular trajectory of x
is also perturbed more due to the same reason; and (4) the tool-
tip y is still maintained at y = 0 with contact-keeping mechanism
strong enough.

Let us also consider the case of vertical-jack operation, which,
for simplicity, we assume to occur about the axis of EB

≈ Eo with
y ≈ 0. Then, similar to above, the rotationmatrixRof the quadrotor
is reduced to

R(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


with ω = [0; θ̇; 0], where θ is the pitch angle, and the resultant
contact force is given by

RTu =

 md3θ̈ − md1θ̇2 − mg sin θ
0

−md1θ̈ − md3θ̇2 − λ+ mg cos θ

 (24)

which we want to minimize to maintain tool-tip contact.
Similar to (22), the first line of (24) possesses the form of the

pendulum dynamics as analyzed in Section 3.2. This dynamics (24)
is the internal dynamics (11) constrained by φ̇ = ψ̇ = 0. This
internal dynamics (24) also shows that the vertical-jack operation
is muchmore prone to the finite-time escape than the screwdriver
operation. That is, the internal dynamics (24) contains quadratic
term (e.g.,md1θ̇2), which is able to trigger the finite-time escape as
analyzed in Section 3.3 and is absent in the screwdriver operation
internal dynamics (22).

We set d3 < 0 according to Theorem 2 to avoid internal
instability and choose the desired pitch profile θd(t) s.t.,

θd(t) = θmax sin(ωn/2)t, ωn =

g/|d3| (25)

where we adopt ωn/2 instead of ωn, as the operation with
ωn exhibits finite-time escape (with the ν3-action deactivated),
whereas that with ωn/2 is mild enough not to induce its
occurrence.With this slow-downωn/2, of course, the perturbation
force RTu becomes larger as it deviates further from the exact
solution of (24). We apply the torque control τ as defined above
to regulate q = [ψ; θ;φ] to qd := [0; θd(t); 0]. To eliminate the
third line of (24), we define the thrust input λ s.t.,

λ = −md1θ̈d − md3θ̇2 + mg cos θ

where we use θ̈d instead of θ̈ as the latter is difficult to measure
in practice, although this would produce more perturbation to the
tool-tip contact.

Simulation results of this vertical-jack operation are presented
in Fig. 10, where we can see that the quadrotor can stably perform
the task. The contact force fe becomes relatively large though, aswe
utilize ωn/2 instead of ωn to avoid the finite-time escape. We also
perform similar simulationwith d3 > 0 to intentionally violate the
necessary condition of Theorem 2 and observe that the quadrotor
is flipping over to converge to its stable equilibrium (i.e., tool above
the quadrotor), yet, during this course, with the ν3-action (16)
deactivated, ω becomes large enough to trigger the finite-time
escape (not shown here: see instead Lee & Ha, 2012, Fig. 3).

4.2. Hybrid position/force control

We first set d3 ≠ 0, so that, following Theorem 1, we can
generate any Cartesian control action u ∈ ℜ

3 at the tool-tip y ∈

ℜ
3 by using (λ, τ ) via (6), or, more precisely, by using (λ, ν̇1, ν̇2)

via (9). We may then consider the y-dynamics as a simple fully-
actuated point mass dynamics (4), i.e.,

mÿ = u + fe (26)

where we can assign u ∈ ℜ
3 arbitrarily and fe ∈ ℜ

3 is the inter-
action force between the tool-tip and the working surface. Once
we have this fully-actuated y-dynamics (26), it becomes rather a
standard task to design the hybrid position/force control for u.

Of course, this statement and the validity of (26) hinge upon
the well-behavedness of the internal dynamics (11). To ensure
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(a) Trajectory of quadrotor center-of-mass position x (positive x3 implies
downward direction).

(b) Control action λ, τ .

(c) Contact force fe (with f1 = fe1, fp =


f 2e2 + f 2e3).

Fig. 9. Screw-driver operation about the N-axis with ψd(t) := ψmax sinωnt and
ψd(t) := ψmax sin(ωn/2)t .

this, we apply the ν3-action (16), which turns out to be crucial
here, as it can prevent finite-time escape of the internal dynamics
(11) even against the sudden surges of angular rate ω due to the
tool–surface collision impacts (even with d3 < 0—see Fig. 11) or
aggressive transition from the unstable equilibrium to the stable
equilibrium with d3 > 0 (see Fig. 12). If it were not for this ν3-
action, these sudden surges ofw would trigger finite-time escape,
thereby, invalidate the dynamics (26).

As stated after Theorem 3 of Section 3.3, this ν3-action does
not at all interfere with the tool-tip control u, implying that, here,
we can just focus on the design of u in (26). This ν3-action, as
also mentioned in Section 3.3, yet, can produce extra rotation
motion, which may induce quadrotor–surface collision. Although
no collision occurs here in our simulation, how to prevent collision,
(a) Trajectory of the quadrotor center-of-mass position x
(positive x3 implies downward direction).

(b) Control action λ, τ .

(c) Contact force fe (with f1 = fe1, fp =


f 2e2 + f 2e3).

Fig. 10. Vertical jack operation about the E-axis with θd(t) := θmax sinωnt .

or, even further, how to achieve collision avoidance ability, by
exploiting this ν3-action is a topic of our on-going work (see the
second last paragraph of Section 3.3).

With this stabilizing, yet, decoupled ν3-action, we can then
just focus on (26) to design the hybrid position/force control for
u. For this, we particularly utilize passive decomposition (Lee,
2010; Lee & Li, 2013), which not only provides both the tangential
and normal dynamics w.r.t. the surface (in contrast to Murray, Li,
& Sastry, 1993), but also requires less cancellation of the open-
loop dynamics (as compared to Khatib, 1987). A full treatment of
general hybrid position/force control is not a main topic of this
paper and we refer readers to the above references.

We first define the two-dimensional working surface of the
tool-tip y ∈ ℜ

3 by

h(y) = 0 (27)

where h : ℜ
3

→ ℜ is a smooth function with the full-rank Ja-
cobian, with its level sets constituting a foliation of the working
surface. Then, following (Lee & Li, 2013), at each y, we can decom-
pose the tangent space TyM and the cotangent space T ∗

y M of the
y-dynamics (26) s.t.,

TqM = D⊤
⊕ D⊥ and T ∗

q M = Ω⊤
⊕Ω⊥
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Fig. 11. Hybrid position/force control with d = [0.35; 0; −0.3] m and the
stabilizing ν3-action (16).

whereD⊤ andD⊥ are the distributions of the null-space of ∂h
∂y and

the orthogonal complement of D⊤ w.r.t. the inertia metric m of
(26); andΩ⊤ andΩ⊥ are the annihilating co-distributions of D⊥

and D⊤, respectively.
Fig. 12. Hybrid position/force control with d = [0.35; 0; 0.3]mand the stabilizing
ν3-action (16).

With this decomposition of the tangent and co-tangent spaces,
we can write the velocity ẏ and control/contact-force u + fe of the
y-dynamics (26) s.t.,
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Fig. 13. Hybrid position/force controlwith d = [0.35; 0; −0.3]mand the ν3-action
(16) deactivated.

ẏ =:

D⊤ D⊥

  
=:D(y)


vl
vh


,

u + fe =: [ΩT
⊤

ΩT
⊥
]  

=:ΩT (y)


ul + fl
uh + fh

 (28)

where v := [vl; vh] ∈ ℜ
3 is the transformed velocity, and the

matrices D⊤ ∈ ℜ
3×2, D⊥ ∈ ℜ

3×1, Ω⊤ ∈ ℜ
2×3 and Ω⊥ ∈ ℜ

1×3

identify D⊤, D⊥, Ω⊤ and Ω⊥, respectively. Since the inertia
metric m of (26) is Euclidean, following (Lee & Li, 2013), we can
obtain the following closed-form expressions for these matrices:
D⊤ ≈ null(∂h/∂y) with DT

⊤
D⊤ = I , Ω⊥ =

∂h
∂y , D⊥ =

ΩT
⊥
(Ω⊥Ω

T
⊥
)−1, andΩ⊤ = (DT

⊤
D⊤)

−1DT
⊤
. We can then show that

DT
⊤
D⊥ = 0, ΩD = I,

dh
dt

= Ω⊥ẏ = Ω⊥D⊥vh = vh

where the last equation clearly shows that vh ∈ ℜ is the velocity of
the tool-tip y normal to the working surface, while vl ∈ ℜ

2 is the
tangential to the surface.

Differentiating (28), we can further obtain

ÿ = D v̇ + Ḋv

and, inserting this into (26) with the left-multiplication by DT , we
can achieve

mv̇l + Ql(y, ẏ)vl + Qlh(y, ẏ)vh = ul + fl (29)
mv̇h + Qh(y, ẏ)vh + Qhl(y, ẏ)vl = uh + fh (30)
where vh = ḣ and

mDT (y)Ḋ(y) =:


Ql(y, ẏ) Qlh(y, ẏ)
Qhl(y, ẏ) Qh(y, ẏ)


.

The dynamics in (29) is called locked system, which specifies the
y-dynamics tangential to the working surface (27), whereas the
dynamics in (30) shape system, which describes the y-dynamics
normal to the surface (27). Both of these locked and shape systems
inherit the Lagrange structure and passivity from the original
dynamics (26), with Ql ∈ ℜ

2×2 being skew-symmetric, Qh =

0 and Q T
lh = −Qhl. This preserved structure and passivity can

be utilized for control synthesis (e.g., passivity-based control) as
shown below. For more details on passive decomposition, refer to
(Lee, 2010; Lee & Li, 2013).

Once we have the locked-shape dynamics decomposition
(29)–(30), it becomes rather straightforward to design the hybrid
position/force control. First, to drive the tool-tip position y on the
working surface (27), we can control the locked system (29). For
this, denote a local parameterization of the surface by ql := ql(y) ∈

ℜ
2. Differentiating ql with the fact that ql(y) does not change along

the normal direction to the surface, we then have

q̇l :=
∂ql
∂y

ẏ =
∂ql
∂y

D⊤vl =: B−1(y)vl

where B(y) :=


∂ql
∂y D⊤

−1
∈ ℜ

2×2 is assumed to exist locally.

With this B, we can further obtain that vl = Bq̇l and v̇l = Bq̈l + Ḃq̇l,
and, substituting these to (29) and left multiplying by BT , we have
mBTBq̈l + BT (mḂ + QlB)q̇l + BTQlhvh = BT (ul + fl)
where mBTB ∈ ℜ

2×2 is the positive-definite projected inertia
on the surface with d

dt (mBTB) − 2BT (mḂ + QlB) being skew-
symmetric. We can then design the following exponentially-
converging passivity-based tracking control on the surface:
ul := Qlhvh − fl + mBq̈dl + (mḂ + QlB)q̇dl

− B−T
[bl(q̇l − ˙qdl )+ kl(ql − qdl )] (31)

where bl, kl > 0 are the control gains, and qdl (t) ∈ ℜ
2 is the desired

trajectory on the surface.
On the other hand, for the tool-tip behavior normal to the

surface, we can control the shape system (30). For this, when y
is outside the surface, we first apply the following control ul to
approach to the surface:

uh := Qlhvl − bhvh − kh(h − h⋆) (32)
where vh = ḣ, Qh = 0 and h⋆ ∈ ℜ is the set-position slightly
within (or close to) the surface (27), and kv, kp > 0 are the control
gains. Once contact is detected, we then switch to the following
normal force control:

uh := Qlhvl − bhvh − f dh − ki

 t

0
(f dh − fh)ds (33)

where f dh ∈ ℜ is the desired contact force, and bh, ki > 0 are
the control gains. See (Tarn, Wu, Xi, & Isidori, 1996) for some gain
conditions, with which we can ensure fh → f dh after only a finite
number of switchings between these controls uh.

This designed hybrid position/force control (ul, uh) is then
decoded into the control inputs (λ, τ ) of the quadrotor (1)–(2) as
follows: (1) transform (ul, uh) back to the desired tool-tip control
u by (28); (2) compute the thrust input λ and the desired (ν̇1, ν̇2)
to produce this u from the internal dynamics (9); (3) given (ν̇1, ν̇2)
and the ν̇3-action of (16), obtain the desired angular acceleration
ω̇d

∈ ℜ
3 by using (8); and (4) compute the torque input τ via (7)

to achieve ω̇ → ω̇d. The following Theorem 4 summarizes main
property of the hybrid position/force control (31)–(33), for which
the decoupling between the ν3-action and the generation of u via
(9) is crucial.
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Theorem 4. Consider the quadrotor-tool system (1)–(2) under the
hybrid position/force control (31)–(33) and the ν3-action (16). Then,
ql → qdl exponentially and fh → f dh asymptotically (under the
condition of Tarn et al., 1996) without finite-time escape of internal
dynamics.

We perform simulations of this hybrid position/force control.
For that, we assume 2% of parametric uncertainty and 3% actuation
uncertainty. We approximate the discontinuous sgn(·) function by
the continuous atan(·) function for the ν3-action (16) asmentioned
in Section 3.3. We define the working surface to be a vertical plane
defined by x = −2 [m] as shown in Fig. 11.

For the first simulation, we set d = [0.35; 0; −0.3] m (i.e., tool
above the quadrotor) according to Theorem 2 to maintain the
stable tool operation configuration. We also activate the ν3-action
(16) to prevent finite-time escape according to Theorem 3. The
results are shown in Fig. 11, where we can observe that, even with
the surge of angular velocity due the impact between the tool-
tip and the surface (around 3 s), the quadrotor can still maintain
stable operation thanks to the stabilizing ν3-action, with which
(ν1, ν2) can stay within the compact set S of Theorem 3 (second
plot of Fig. 11). We can also see from Fig. 11 that the trajectory
tracking can be ensured even during the impact (with no limit
imposed on the control λ, τ ) and also with the ν3-action (see the
last third paragraph of Section 3.3). The contact force control is also
decoupled from the ν3-action as well, which is yet difficult to see
from Fig. 11, as the transient behavior of the contact force control
after the impact excites the ν3-action (16).

For the second simulation, we set d = [0.35; 0; 0.3] m to
intentionally violate the necessary condition of Theorem 2, yet,
still keep the ν3-action of Theorem 3. The results are presented
in Fig. 12, where we can observe that, as the quadrotor starts
from the unstable configuration (i.e., with the tool below it), it is
flipping over by itself to the stable equilibrium (i.e., tool above the
quadrotor). It also hits the wall around 2 s, (indicator (3) of Fig. 12)
with a large impact force, bounces back from the wall, approaches
and makes a contact with the wall again around 5 s (indicator
(4)). After that, the quadrotor attains the steady-state trajectory
tracking and the normal force regulation while maintaining the
stable posture (i.e., tool above the quadrotor).

During the course of flipping (indicator (2) in Fig. 12) and also
after the impacts, the quadrotor gains fairly large angular velocity,
which is then suppressed by the ν3-action not to trigger finite-time
escape. Similar to Fig. 11, in Fig. 12, both the trajectory tracking
and the contact force control are achieved without being affected
by the ν3-action, with the first even ensured during the impacts as
well. It is alsoworthwhile tomention that the indicators (1) and (2)
outside the invariant setS in Fig. 12 donot contradict to Theorem3,
as the invariant set S in Theorem 3 is defined for the stable posture
(i.e., tool above the quadrotor), yet, the indicators (1) and (2) of
Fig. 12 are associated when the quadrotor is operating around the
unstable equilibrium (i.e., tool below the quadrotor).

We also perform the simulationwith the same setting as Fig. 11,
yet, in this case, turn off the ν3-action. The results are shown in
Fig. 13, where we can see that, even if the necessary condition of
Theorem 2 is granted, without the ν3-action, the sudden increase
of the angular velocity when the quadrotor hits the wall (around
3 s both for Figs. 11 and 13) indeed triggers finite-time escape. We
observe similar occurrence of the finite-time escape whenwe turn
off the ν3-action for the simulation of Fig. 12 (not shown here), for
which finite-time escape occurs as the quadrotor is flipping over
(i.e., indicator (2) of Fig. 12).
5. Summary and future work

In this paper, we investigate issues salient to the dynamics
and control of the quadrotor, when it is operating a simple rigid
tool attached on it. Some structural conditions are elucidated to
generate arbitrary tool-tip Cartesian control action (Theorem 1)
and also to avoid instability of the internal dynamics (Theorem 2),
which inevitably arises due to the quadrotor’s under-actuation.
This necessary condition for the internal stability (Theorem 2)
is particularly interesting, since it suggests a design, which
would appear counter-intuitive to the practitioners, that is, the
tool should be installed above the quadrotor, not below it. We
also fully characterize the four-dimensional nonlinear internal
dynamics of the spatial quadrotor tool-operation, manifest that
some quadratic terms therein can trigger finite-time escape, and
propose a stabilizing control action to suppress that (Theorem 3).
The obtained theoretical results are then illustrated/validated for
the two practically-important application scenarios: (1) rotational
tool operation including screw-driver and vertical-jack; and (2)
hybrid position/force control against a working surface.

On-going and possible future research topics include: (1) ex-
perimental verification of the proposed framework, particularly
relying on on-board sensors; (2) incorporation of collision avoid-
ance ability into our framework, particularly via state-dependent
switching ν3-action; and (3) cooperation of multiple quadrotor-
tool systems and their teleoperation.
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